Nesta dissertação, foi utilizada a técnica SIFT (Scale Invariant Feature Transform) para o
reconhecimento de imagens da área dos olhos (região periorbital). Foi implementada uma
classificação das imagens em subgrupos internos ao banco de dados, utilizando-se das
informações estatísticas provenientes dos padrões invariantes produzidos pela técnica SIFT.
Procedeu-se a uma busca categorizada pelo banco de dados, ao invés da procura de um
determinado padrão apresentado, através da comparação deste com cada padrão presente no
banco de dados. A tais padrões foi aplicada uma abordagem estatística, através da geração da
matriz de covariâncias dos padrões gerados, sendo esta utilizada para a categorização, tendo
por base uma rede neural híbrida. A rede neural classifica e categoriza o banco de dados de
imagens, criando uma topologia de busca. Foram obtidos resultados corretos de classificação
de 76,3% pela rede neural híbrida, sendo que um algoritmo auxiliar determina uma hierarquia
de busca, onde, ocorrendo uma errônea classificação, a busca segue em grupos de pesquisas
mais prováveis.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:UERJ:oai:www.bdtd.uerj.br:1727 |
Date | 06 May 2011 |
Creators | Daniel Gomes Ribeiro |
Contributors | Joaquim Teixeira de Assis, João Flávio Vieira de Vasconcellos, Marcelo Portes de Albuquerque, Luiz Biondi Neto |
Publisher | Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Modelagem Computacional, UERJ, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UERJ, instname:Universidade do Estado do Rio de Janeiro, instacron:UERJ |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds