We give a brief overview of Bass-Serre theory and introduce a method of adding a limit point to graphs of groups. We explore a basic example of this method, and find that while the fundamental theorem of Bass-Serre theory no longer applies in this case we still recover a group action on a covering space of sorts with a subgroup isomorphic to the fundamental group of our new base space with added limit point. We also quantify how much larger the fundamental group of a graph of groups becomes after this construction, and discuss the effects of adding and identifying together such limit points in more general graphs of groups. We conclude with a theorem stating that the cokernel of the map on fundamental groups induced by collapsing an arc between two limit points contains a certain fundamental group of a double cone of graphs of groups, and we conjecture that this cokernel is isomorphic to this double cone group.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7954 |
Date | 01 July 2018 |
Creators | Shumway, Alexander Jin |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0028 seconds