Les freins aéronautiques sont soumis à des instabilités vibratoires induites par le frottement. Il en résulte des vibrations qui présentent un risque pour la structure du frein et de l’atterrisseur et posent des problèmes d’intégration. Safran Landing Systems doit donc répondre à des spécifications avionneurs strictes sur les niveaux des vibrations générées par son équipement. Le respect de ces spécifications est actuellement contrôlé par la réalisation d’essais de freinage longs et coûteux. L’objectif de ces travaux de recherche est de reproduire numériquement ces phénomènes vibratoires via des outils intégrables au processus de conception d’un frein. Le crissement de frein, bien qu’il soit l’objet de recherches depuis le début du XXe siècle, demeure un phénomène assez mal compris, notamment dans l’aéronautique. Des vibrations instables apparaissent régulièrement sur l’ensemble de la plage fréquentielle 0-2 kHz. Au cours de la dernière décennie, une instabilité vibratoire vers 200 Hz dénommée whirl 2 s’est manifestée de manière récurrente et souvent critique sur la plupart des nouveaux freins développés. On cherche donc à mettre en place une méthode permettant de simuler l’apparition et les amplitudes des instabilités vibratoires, notamment du mode de whirl 2. Dans une première partie, on présente des analyses d’essais vibratoires réalisés en conditions opérationnelles et expérimentales. On décrit ensuite la modélisation par la méthode des éléments finis du frein instable au sens de Lyapunov. La stabilité du système linéarisé est étudiée et on montre une corrélation en fréquence et déformée entre le modèle et les essais. Ce modèle éléments finis est trop volumineux en l’état pour permettre la simulation d’amplitudes de vibrations non linéaires. On propose donc dans une seconde partie deux méthodes de réduction adaptées à l’architecture complexe d’un système de freinage aéronautique et permettant la prise en compte du frottement. La première est une méthode semi-analytique qui se révèle très performante jusqu’à 500 Hz. La seconde méthode de réduction mise en oeuvre est la double synthèse modale. Elle est implémentée dans sa version classique, puis une amélioration est proposée avec succès : la double synthèse modale complexe. La troisième partie est consacrée à l’étude de la dynamique non linéaire du whirl 2 par la réalisation d’intégrations temporelles. La simulation des amplitudes de vibration nécessite la prise en compte réaliste du comportement non linéaire du frein. Or, on fait d’abord le constat que, contrairement à une hypothèse communément admise, les non-linéarités de contact situées aux interfaces frottantes ne suffisent pas à expliquer à elles seules la saturation des amplitudes vibratoires constatée expérimentalement. La recherche des phénomènes physiques non linéaires influents nous amène a considérer l’interaction de la structure vibrante avec le circuit hydraulique de commande du frein. La modélisation du couplage hydrodynamique fournit alors des éléments de compréhension inédits et permet de formuler des règles de conception. Enfin on étudie l’impact du frottement sec dans les contacts périphériques des disques de freinage avec la structure. Ce phénomène, jusque là négligé, apparaît largement prépondérant. Des études d’influences, présentant une bonne corrélation avec les essais, permettent de mettre en évidence de manière robuste l’influence du design et des scénarios de freinage sur les amplitudes vibratoires. / These vibrations are a threat for the brake and landing-gear structural integrity and represent an issue in terms of integration. Thus Safran Landing Systems has to comply with aircraft manufacturers’ strict requirements on the vibration amplitude its product is likely to generate. Compliance to these requirements is assessed by long and costly braking test campaigns. The objective of the research presented here is to reproduce by simulation the brake dynamic instabilities with numerical tools that could be integrated in the design process. Brake squeal has been a research topic since the early XXth century. However it remains a rather ill-understood phenomenon, especially in aeronautics. Unstable vibrations regularly appear on the whole 0-2kHz frequency spectrum. In the last decade, an instability located around 200 Hz called whirl 2 persistently appeared on the newly developed wheel and brake assemblies, sometimes exhibiting critical vibration amplitudes. Consequently, Safran Landing Systems wishes to develop numerical tools able to simulate both the occurrence and the amplitudes associated with friction-induced instabilities, especially with the whirl 2 mode. In the first part of this report, an experimental analysis of the brake is conducted, on both laboratory and in operational set-ups. The modelling of the wheel and brake assembly using the finite element method is then described. The system stability in a Lyapunov’s sense is studied and shows good correlation in both frequencies and mode shapes with the experiments. This finite element model is too big to be used to perform the transient simulation of the nonlinear amplitudes. In the second part, two reduction methods, tailored to the complex aircraft brakes architectures, are thus presented. The first method is a semi-analytical. It shows excellent performances up to 500 Hz. The second reduction method is the double modal synthesis, implemented under its classical version. It is then successfully improved and called "complex double modal synthesis". The third part is dedicated to the study of the nonlinear dynamics of the whirl 2 through transient analyses. The nonlinear amplitudes simulation requires taking into account the relevant nonlinear brake behavior. However, it is first observed that, contrary to a commonly accepted hypothesis, the contact nonlinearities located at the friction interfaces cannot single-handedly account for the vibration amplitudes saturation observed in the tests. The need to identify the relevant physical phenomena leads then to consider the interaction between the squealing brake structure and its hydraulic command circuit. The modelling of the hydro-mechanical coupling provides an unprecedented insight and allows to prescribe design rules. Finally, we study the impact of dry friction in the peripheral contacts between the braking discs and the structure. This phenomenon, neglected until now, appears to have a major influence. Sensitivity studies exhibit a good correlation with tests, allowing to highlight, in a robust manner, the impact of brake design and braking scenarii on the nonlinear vibration amplitudes.
Identifer | oai:union.ndltd.org:theses.fr/2017LYSEC024 |
Date | 23 June 2017 |
Creators | Gatt, Antoine |
Contributors | Lyon, Jézéquel, Louis, Besset, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds