Return to search

Estimation of the Squared Population Cross-Validity Under Conditions of Predictor Selection

The current study employed a Monte Carlo design to examine whether samplebased and formula-based estimates of cross-validated R2 differ in accuracy when predictor selection is and is not performed. Analyses were conducted on three datasets with 5, 10, or 15 predictors and different predictor-criterion relationships. Results demonstrated that, in most cases, a formula-based estimate of the cross-validated R2 was as accurate as a sample-based estimate. The one exception was the five predictor case wherein the formula-based estimate exhibited substantially greater bias than the estimate from a sample-based cross validation study. Thus, formula-based estimates, which have an enormous practical advantage over a two sample cross validation study, can be used in most cases without fear of greater error.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2475
Date01 May 2015
CreatorsKircher, Andrew J.
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0017 seconds