The purpose of this thesis is to automate the online detection of weaving defects by a computerized system based on image processing software. Obviously, fabric inspection has an importance to prevent risk of delivering inferior quality product. Until recently, the visual defect detection is still under taken offline and manually by humans with many drawbacks such as tiredness, boredom, and, inattentiveness. Fortunately, the continuous development in computer technology introduces the online automated fabric inspection as an effective alternative. Because the defect-free fabric has a periodic regular structure, the occurrence of a defect in the fabric breaks the regular structure. Therefore, the fabric defects can be detected by monitoring fabric structure. In our work, Fast Fourier Transform and Cross-correlation techniques, i.e. linear operations, are first implemented to examine the structure regularity features of the fabric image in the frequency domain. To improve the efficiency of the technique and overcome the problem of detection errors, further thresholding operation is implemented using a level selection filter. Through this filter, the technique is able to detect only the actual or real defects and highlight their exact dimensions. A software package such as Matlab or Scilab is used for this procedure. It is implemented firstly on a simulated plain fabric to determine the most important parameters during the process of defect detection and then to optimize each of them even considering noise. To verify the success of the technique, it is implemented on real plain fabric samples with different colours containing various defects. Finally, a vision-based fabric inspection prototype that could be accomplished on-loom to inspect the fabric under construction with 100% coverage is proposed.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00720041 |
Date | 16 May 2012 |
Creators | Malek, Abdel Salam |
Publisher | Université de Haute Alsace - Mulhouse |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0019 seconds