Return to search

A molecular analysis of opsin integration at the endoplasmic reticulum

A major step in the biosynthesis of many membrane proteins is their insertion into the membrane of the endoplasmic reticulum (ER). The insertion of a multi-spanning membrane protein is a complex process since several transmembrane (TM) domains have to be correctly integrated in order to enable its correct assembly. At present it is unclear how the integration of multiple TM domains is co-ordinated by the ER translocon. The aim of this study was to analyse the molecular environment of the TM domains of a model seven TM domain protein, opsin, so as to better understand the mechanism by which integration occurs. For this purpose, stable 'integration intermediates' of defined lengths representing distinct stages of opsin biosynthesis were generated by in vitro translation of truncated mRNA in the presence of semi-permeabilised cells. Cysteine-mediated, site-specific cross-linking and immunoprecipitation were employed to examine the environment of these integration intermediates. In addition, cysteine-specific modification reagents with different physical properties were used to investigate the environment of opsin TM3 during its insertion at the ER membrane. Opsin TM domains exhibit unique patterns of adduct formation with the ER translocon components, Sec61α and Sec61β. TM1 associates with the Sec61 complex at two distinct stages during nascent chain extension, and this behaviour is dependent on the presence of subsequent TM domains. The re-association of TM1 with the transloconmay well facilitate the co-ordinated integration of TMs 1-3 into the lipid bilayer. Opsin TM4 exits the Sec61 complex as soon as the subsequent TM domain is synthesised, while TM5, TM6 and TM7 remain associated with the ER translocon throughout protein synthesis, suggesting their concerted release upon chain termination. Evidence is provided that opsin is integrated via a single Sec61 heterotrimer, despite the fact that the ER translocon appears to consist of multiple copies of the Sec61 complex. On the basis of this work, a model is presented describing the complete integration of opsin at the ER membrane.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:606761
Date January 2005
CreatorsIsmail, Nurzian
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://www.manchester.ac.uk/escholar/uk-ac-man-scw:77481

Page generated in 0.0014 seconds