Return to search

Processus à valeurs dans les arbres aléatoires continus

Cette thèse est consacrée à l'étude de certains processus aléatoires à valeurs dans les arbres continus. Nous définissons d'abord un cadre conceptuel pour cette étude, en construisant une topologie polonaise sur l'espace des R-arbres localement compacts, complets et munis d'une mesure borélienne localement finie. Cette topologie, dite de Gromov-Hausdorff-Prokhorov, permet alors la définition de processus de Markov à valeurs arbre. Nous donnons ensuite une nouvelle construction du processus d'élagage d'Abraham-Delmas-Voisin, qui est un exemple de processus qui prend ses valeurs dans les arbres de Lévy. Notre construction, qui dévoile une nouvelle structure généalogique des arbres de Lévy, est trajectorielle, et permet d'identifier explicitement les transitions du processus d'élagage. Nous appliquons cette description à l'étude de certains temps d'arrêt, comme le premier temps auquel le processus franchit une hauteur donnée. Nous décrivons le processus à cet instant grâce à une nouvelle décomposition de type spinal. Enfin, nous nous intéressons à la fragmentation d'Aldous-Pitman de l'arbre brownien d'Aldous. En particulier, nous étudions, à la suite d'Abraham et Delmas, l'effet de cette fragmentation sur les sous-arbres discrets de l'arbre brownien. Le nombre de coupures nécessaires avant d'isoler la racine, convenablement renormalisé, converge vers une variable aléatoire de Rayleigh ; nous donnons un théorème central limite qui précise les fluctuations autour de cette limite

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00804224
Date10 December 2012
CreatorsHoscheit, Patrick
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds