Return to search

Gallium arsenide optomechanical disks approaching the quantum regime / Disques optomécaniques en arseniure de gallium à l'approche du régime quantique

Le but de cette thèse est d'atteindre l'état de mouvement fondamental sur des disques optomécaniques en arseniure de gallium. La mécanique quantique prévoit en effet que la quantité d'énergie d'un système physique (mécanique ou autre) ne peut jamais être réduite totalement à zéro. Il existe cependant un état de plus basse énergie, que l'on appelle l'état fondamental. L'effet physique utilisé pendant cette thèse pour extraire de l'énergie du système (et ainsi atteindre l'état fondamental) est le couplage opto-mécanique. Les micro-disques supportent des résonances optiques à symétrie axiale appelées modes de galerie ainsi que des résonances mécaniques appelées modes de respiration. Le couplage entre ces deux modes peut être intuitivement compris comme suit: lorsque le disque "respire" mécaniquement, la circonférence du disque ressentie par le mode optique change, ce qui induit un décalage de sa longueur d'onde de résonance. A l'inverse, le mode optique exerce une pression de radiation sur les parois du disque, qui peut amplifier ou atténuer le mouvement mécanique. Le refroidissement opto-mécanique est d'autant plus efficace que les résonances (optique comme mécanique) ont de faibles taux de dissipation. Une grande partie de ce travail de thèse à donc été dédiée à la réduction de ces pertes. Des efforts technologiques ont permis d'obtenir des structures lisses et régulières, pour éviter la diffusion (et donc la dissipation) de lumière par rugosités. Afin de réduire la dissipation mécanique, une structure novatrice incluant des boucliers mécaniques à été développée, et à permis de réduire la dissipation mécanique d'un facteur 100. L'état du système après refroidissement opto-mécanique dépend par ailleurs de sa température initiale. Il est donc avantageux de placer l'échantillon dans un cryostat. L'appareil utilisé au cours de cette thèse permet de refroidir l'échantillon jusqu'à une température de 2,6 K. Les expériences de photonique en environnement cryogénique imposant des contraintes en terme de stabilité, il a été nécessaire de d'opter pour une approche avec guide d'onde intégré. Le développement de guides d'ondes entièrement suspendus a permis d'apporter et de collecter la lumière depuis le disque de manière optimale. Toutes ces efforts ont permis de descendre à un taux d'occupation mécanique de 30 quanta. Cependant de nombreuses améliorations peuvent encore être implémentées, afin d'ancrer ces résonateurs fermement dans l'état fondamental, ce qui permettrait d'effectuer par exemple des expériences d'intrication quantique / The main goal of this PhD work has been to reach the quantum ground state on gallium arsenide optomechanical disks. Quantum mechanics predict that the amount of energy within a given system cannot be brought to zero. Nevertheless a state of minimal energy exists, called the ground state. The physical mechanism used to extract energy from the system (and thus reach the ground state) is the optomechanical coupling. The miniature disks support optical and mechanical resonances, respectively called whispering gallery modes and radial breathing modes. The coupling between these two modes can be intuited as follows: when the disk breathes mechanically, its perimeter increases. The optical mode evolves now in a wider cavity, and its resonance wavelength therefore changes. Conversely, the optical mode exerts radiation pressure on the disk boundaries, which can either amplify or damp the mechanical motion. Optomechanical cooling is more efficient if the dissipation rates of the optical and mechanical resonances are low. An important part of this PhD work has therefore been dedicated to the reduction of dissipation. Technological efforts have been made to fabricate smooth and regular structures, so as to limit optical scattering. A novel approach consisting of a mechanical shield has allowed to reduce mechanical damping by a factor of 100. The system state after optomechanical cooling depends on its initial temperature. It is therefore advantageous to place the system in cryogenic environment prior to starting the optomechanical cooling. The apparatus used throughout this PhD work can cool the optomechanical device down to 2.6 K. As optical experiments in cryogenic environment require a good mechanical stability, it is necessary to opt for fully integrated devices where the optomechanical resonator and the waveguide bringing the light to it are processed on the same chip. The development of fully suspended waveguides has moreover allowed to inject and collect light from the device more efficiently. All these improvements have allowed to reach a state of 30 excitation quanta in the mechanical resonator. However many ideas can still be tried to keep enhancing the devices, so as to anchor them more firmly in the ground state. This would open the way to more advanced experiments, such as entanglement of mechanical oscillators

Identiferoai:union.ndltd.org:theses.fr/2016USPCC326
Date25 November 2016
CreatorsHease, William
ContributorsSorbonne Paris Cité, Favero, Ivan
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0025 seconds