Return to search

Glycan-Cyanovirin-N Interactions and Designed WW Domains: Combining Experimental and Computational Studies

abstract: Cyanovirin-N (CVN) is a cyanobacterial lectin with potent anti-HIV activity, mediated by binding to the N-linked oligosaccharide moiety of the envelope protein gp120. CVN offers a scaffold to develop multivalent carbohydrate-binding proteins with tunable specificities and affinities. I present here biophysical calculations completed on a monomeric-stabilized mutant of cyanovirin-N, P51G-m4-CVN, in which domain A binding activity is abolished by four mutations; with comparisons made to CVN<super>mutDB</super>, in which domain B binding activity is abolished. Using Monte Carlo calculations and docking simulations, mutations in CVN<super>mutDB</super> were considered singularly, and the mutations E41A/G and T57A were found to impact the affinity towards dimannose the greatest. <super>15</super>N-labeled proteins were titrated with Man&#945;(1-2)Man&#945;, while following chemical shift perturbations in NMR spectra. The mutants, E41A/G and T57A, had a larger Kd than P51G-m4-CVN, matching the trends predicted by the calculations. We also observed that the N42A mutation affects the local fold of the binding pocket, thus removing all binding to dimannose. Characterization of the mutant N53S showed similar binding affinity to P51G-m4-CVN. Using biophysical calculations allows us to study future iterations of models to explore affinities and specificities. In order to further elucidate the role of multivalency, I report here a designed covalent dimer of CVN, Nested cyanovirin-N (Nested CVN), which has four binding sites. Nested CVN was found to have comparable binding affinity to gp120 and antiviral activity to wt CVN. These results demonstrate the ability to create a multivalent, covalent dimer that has comparable results to that of wt CVN.

WW domains are small modules consisting of 32-40 amino acids that recognize proline-rich peptides and are found in many signaling pathways. We use WW domain sequences to explore protein folding by simulations using Zipping and Assembly Method. We identified five crucial contacts that enabled us to predict the folding of WW domain sequences based on those contacts. We then designed a folded WW domain peptide from an unfolded WW domain sequence by introducing native contacts at those critical positions. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2014

Identiferoai:union.ndltd.org:asu.edu/item:25913
Date January 2014
ContributorsWoodrum, Brian William (Author), Ghirlanda, Giovanna (Advisor), Redding, Kevin (Committee member), Wang, Xu (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format119 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0014 seconds