Return to search

Energy And Power Systems Simulated Attack Algorithm For Defense Testbed And Analysis

The power grid has evolved over the course of many decades with the usage of cyber systems and communications such as Supervisory Control And Data Acquisition (SCADA); however, due to their connectivity to the internet, the cyber-power system can be infiltrated by malicious attackers. Encryption is not a singular solution. Currently, there are several cyber security measures in development, including those based on artificial intelligence. However, there is a need for a varying but consistent attack algorithm to serve as a testbed for these AI or other practices to be trained and tested. This is important because in the event of a real attacker, it is not possible to know exactly where they will attack and in what order. Therefore, the proposed method in this thesis is to use criminology concepts and fuzzy logic inference to create this algorithm and determine its effectiveness in making decisions on a cyber-physical system model. The method takes various characteristics of the attacker as an input, builds their ideal target node, and then compares the nodes to the high-impact target and chooses one as the goal. Based on that target and their knowledge, the attackers will attack nodes if they have resources. The results show that the proposed method can be used to create a variety of attacks with varying damaging effects, and one other set of tests shows the possibility for multiple attacks, such as denial of service and false data injection. The proposed method has been validated using an extended cyber-physical IEEE 13-node distribution system and sensitivity tests to ensure that the ruleset created would take each of the inputs well. / Master of Science / For the last decades, information and communications technology has become more commonplace for electric power and energy systems around the world. As a result, it has attracted hackers to take advantage of the cyber vulnerabilities to attack critical systems and cause damage, e.g., the critical infrastructure for electric energy. The power grid is a wide-area, distributed infrastructure with numerous power plants, substations, transmission and distribution lines as well as customer facilities. For operation and control, the power grid needs to acquire measurements from substations and send control commands from the control center to substations. The cyber-physical system has its vulnerabilities that can be deployed by hackers to launch falsified measurements or commands. Much research is concerned with how to detect and mitigate cyber threats. These methods are used to determine if an attack is occurring, and, if so, what to do about it. However, for these techniques to work properly, there must be a way to test how the defense will understand the purpose and target of an actual attack, which is where the proposed modeling and simulation method for an attacker comes in. Using a set of values for their resources, motivation and other characteristics, the defense algorithm determines what the attacker's best target would be, and then finds the closest point on the power grid that they can attack. While there are still resources remaining based on the initial value, the attacker will keep choosing places and then execute the attack. From the results, these input characteristic values for the attacker can affect the decisions the attacker makes, and the damage to the system is reflected by the values too. This is tested by looking at the results for the high-impact nodes for each input value, and seeing what came out of it. This shows that it is possible to model an attacker for testing purposes on a simulation.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115273
Date31 May 2023
CreatorsRuttle, Zachary Andrew
ContributorsElectrical Engineering, Liu, Chen-Ching, Jin, Ming, Centeno, Virgilio A., Mehrizi-Sani, Ali
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0024 seconds