Return to search

Développement de procédés écoresponsables pour la synthèse de solvants et d'organocatalyseurs biosourcés / Development of eco-friendly processes for the synthesis of biobased solvents and organocatalysts

Les oxazolidinones sont des composés prometteurs pour des applications industrielles, mais aucune méthode ne convient à ce jour pour les produire à large échelle, à cause de l'utilisation de réactifs et de catalyseurs métalliques nocifs pour la santé et l'environnement. Une nouvelle méthode de synthèse de ces composés a donc été élaborée en utilisant des aminoalcools et du carbonate de diéthyle. Cette réaction est catalysée par un hydrogénocarbonate d'imidazolium biosourcé qui est produit par voie électrochimique afin de réduire son impact sur l'environnement.Cette méthode de synthèse d'oxazolidinones a ensuite été appliquée à la synthèse d'une oxazolidinone biosourcée. Pour cela, la synthèse d'un aminoalcool a été réalisée, et sa structure a été établie à partir de réactifs pouvant être issus de ressources renouvelables. La voie de synthèse a fait l'objet de modifications pour permettre la production de l'aminoalcool à plus grande échelle dans des conditions plus sûres.La seconde thématique de ces travaux porte sur les liquides ioniques, des sels liquides très peu volatils, couramment utilisés comme solvants. Ces composés sont généralement chers, ainsi, plutôt que de les éliminer à la fin de leur utilisation, il est plus intéressant de les recycler. Mais leur faible volatilité empêche leur recyclage par distillation, contrairement aux solvants organiques usuels. Il a ainsi été développé une première méthode électrochimique, économe en énergie, qui permet le recyclage de liquides ioniques biosourcés par la formation d'un hydrogénocarbonate d'imidazolium intermédiaire. Cette méthode a été comparée à d'autres procédés de recyclage grâce à une étude préliminaire du cycle de vie.Mots clés : oxazolidinone, aminoalcool, imidazolium, liquide ionique, biosourcé, recyclage, électrochimie, développement durable, écoconception, cycle de vie / Oxazolidinones are promising compounds for industrial applications, but nowadays there is not convenient method to produce them on large scale, because of the use of reactants and metallic catalysts harmful for health and environment. A new synthesis method of these compounds was thus elaborated using aminoalcohols and diethyl carbonate. This reaction is catalysed by a biobased imidazolium hydrogen carbonate which is produced by an electrochemical pathway in order to reduce its impact on the environment.This oxazolidinones synthesis method was then applied to the synthesis of a biobased oxazolidinone. To achieve this, an aminoalcohol synthesis was realised, and its structure was established from reactants that can come from renewable resources. The synthesis pathway was the object of modifications to permit the production of the aminoalcohol on a larger scale in safer conditions.The second thematic of these works is based on ionic liquids, very low volatile liquid salts, commonly used as solvents. These compounds are usually expensive, so, rather than to eliminate them at the end of their use, it is more interesting to recycle them. But their low volatility prevents their recycling by distillation, unlike common organic solvents. So, a first electrochemical method was developed, low energy consuming, permitting the recycling of biobased ionic liquids by the formation of an imidazolium hydrogen carbonate as intermediate. This method was compared with other recycling processes through a preliminary life cycle study.Keywords: oxazolidinone, aminoalcohol, imidazolium, ionic liquid, biobased, recycling, electrochemistry, sustainable development, eco-design, life cycle

Identiferoai:union.ndltd.org:theses.fr/2018UBFCK046
Date12 December 2018
CreatorsFournier, Antoine
ContributorsBourgogne Franche-Comté, Andrieu, Jacques
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds