In this thesis, we develop a framework that generalizes the previously known notions of theta-summable Fredholm modules to the setting of locally convex dg algebras. By introducing an additional action of the Clifford algebra, we may treat the even and odd cases simultaneously. In particular, we recover the theory developed by Güneysu/Ludewig and extend the definition of odd theta-summable Fredholm modules to the differential graded category. We then construct a Chern character, which serves as a differential graded refinement of the JLO cocycle, and prove that it has all the expected analytical and homological properties. As an application, we prove an odd noncommutative index theorem relating the spectral flow of a theta-summable Fredholm module to the pairing of the Chern character with the odd Bismut-Chern character in entire (differential graded) cyclic homology, thereby extending results obtained by Güneysu/Cacciatori and Getzler.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:91043 |
Date | 25 April 2024 |
Creators | Miehe, Jonas Philipp |
Contributors | Güneysu, Batu, Cacciatori, Sergio, Shen, Shu, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds