Return to search

Shear Resistance Degradation of Lime –Cement Stabilized Soil During Cyclic Loading

This thesis presents the results of a series of undrained cyclic triaxial tests carried out on four lime-cement stabilized specimens and clay specimen. The shear resistance degradation rate of lime-cement column subjected to cyclic loading simulated from heavy truck was investigated based on stress-controlled test. The influence of lime and cement on the degradation rate was investigated by comparing the behavior of stabilized kaolin and unstabilized kaolin with similar initial condition. The results indicate an increase in degree of degradation as the number of loading cycles and cyclic strain increase. It is observed that the degradation index has approximately a parabolic relationship with the number of cycles. Generally adding lime and cement to the clay will increase the degradation index which means lower degree of degradation. The degradation parameter, t has a hyperbolic relationship with shear strain, but it loses its hyperbolic shape as the soil getting stronger. On the other hand, for unstabilized clay an approximate linear relationship between degradation index and number of cycles was observed and the degradation parameter has a hyperbolic shape with the increase number of cycles. It was also observed that the stronger the material was, the lesser pore pressure developed in the lime-cement stabilized clay.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-141196
Date January 2014
CreatorsGebretsadik, Alex Gezahegn
PublisherKTH, Jord- och bergmekanik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationExamensarbete Jord- och bergmekanik, 1652-599X ; 01/14

Page generated in 0.002 seconds