Cette thèse porte sur l'étude de la géométrie de l'espace de spécialisation φ : (X, 0) → (C, 0) d'un germe de singularité analytique complexe (X, 0) sur son cône tangent (CX,0 , 0) du point de vue de l'équisingularité à la Whitney. L'application φ nous donne une famille plate des germes avec section tel que pour chaque t =! 0 le germe φ−1 (t) est isomorphe à (X, 0) et la fibre spéciale est isomorphe au cône tangent. Le but est de établir des conditions sur les strates de la stratification de Whitney minimale de (X, 0) qui assurent l'équisingularité du germe et son cône tangent, generalisant ainsi le résultat de Lê et Teissier pour les hypersurfaces de C3 qui prouve que l'absence des tangentes exceptionnelles est suffisant. Dans ce travail on montre que cette condition est nécessaire et suffisante dans le cas général pour la strate de codimension zero. L'un des ingrédients clés dans la preuve est la théorie de la dépendance integrale sur des ideaux et des modules développé par Teissier, Lejeune, Gaffney, Kleiman, etc, qu'on rappelle au troisième chapitre et où l'on obtient des résultats spécifiques pour cette situation. Les deux premiers chapitres correspondent aux préliminaires, on commence par rappeller la modification de Nash et l'espace conormal d'un espace analytique plongé dans ses versions absolues et relatives à un morphisme et on donne une description explicite de la relation entre le conormal (Nash) relatif de φ : (X, 0) → (C, 0) et le conormal (Nash) de (X, 0). Dans le deuxième chapitre on définit le diagram normal/conormal, l'auréole du germe (X, 0), les cônes exceptionnelles, et on énonce les résultats principaux correspondant à l'équisingularité à la Whitney en incluant la caractérisation des conditions de Whitney en termes du diagramme normal/conormal.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00631426 |
Date | 30 September 2011 |
Creators | Giles Flores, Arturo |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds