L'objet de cette thèse traite du dépôt de couches minces photocatalytiques de dioxyde de titane par l'utilisation d'un dispositif plasma à la pression atmosphérique. Le dispositif industriel utilisé permet le traitement du substrat en post-décharge à basse température. L'objectif à terme est le développement d'un procédé de dépôt en vue de recouvrir des pièces 3D thermosensibles d'un revêtement autonettoyant à moindre coût. Après avoir mis en évidence les bonnes propriétés photocatalytiques des dépôts effectués dans le cadre de cette thèse, le présent travail s'est focalisé sur la compréhension des mécanismes responsables cette photocatalycité. Pour ce faire, trois séries de dépôts correspondant à trois températures de substrat différentes ont été étudiées selon leur composition chimique, leurs mécanismes de croissance et leur cristallinité. Il ressort de cette étude que la photoactivité des dépôts est essentiellement le fait de leur importante surface spécifique ; la cristallinité, bien que présente à haute température de substrat, semblant avoir une influence moindre. Cette surface spécifique est quant à elle due à la croissance d'agglomérats, dont l'adhésion au dépôt diminue avec leur taille. Formés en phase gaz dans des boucles de recirculation, ceux-ci semblent se développer du fait de multiples phénomènes : croissance CVD à leur surface, « agglomération de surface » et « redépôt ». Aussi, il apparait qu'à débit de précurseur donné, leur nombre et leur taille sont deux facteurs intimement liés. Ainsi, en vue de l'optimisation du procédé de dépôt, la maîtrise de leur formation est nécessaire. Celle-ci passe par la diminution du débit de précurseur, de la puissance incidente et de l'ensemble des débits de gaz, telles sont les perspectives principales de ce travail / This PhD work deals with the deposition of photocatalytic thin films of titanium dioxide at low temperature in the post-discharge of an atmospheric pressure plasma process. The main objective is the development of a low cost route for the deposition of self-cleaning coatings on 3D thermosensitive substrates. The deposited coatings present good photocatalytic properties which origin is firstly investigated. The elemental composition, the growth mechanisms and the crystallinity of three series of coatings corresponding to three different deposition temperatures are studied. The high specific surface of the coatings, due to the growth of agglomerates, appears to be the main parameter responsible for such photocatalytic properties. But these agglomerates are also responsible for the poor mechanical properties of the coatings as their adhesion decreases with their size. These agglomerates are formed in gas phase in recirculation loops and develop through multiple phenomena: CVD growth, agglomeration at the surface of the coating and redeposition due to the influence of the post-discharge on the surface of the coating. Moreover, at a given precursor flow rate, their number and their size are interlocked. Thus, with the aim of optimizing the deposition process, the control of the formation of such structures through the decrease of the precursor flow rate, the power input and the gas flows are mandatory and are a perspective of this PhD work
Identifer | oai:union.ndltd.org:theses.fr/2014LORR0007 |
Date | 23 January 2014 |
Creators | Olivier, Sébastien |
Contributors | Université de Lorraine, Belmonte, Thierry, Choquet, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds