Return to search

Réalisation de jonctions ultra-minces par recuit laser : applications aux détecteurs UV / Ultra-shallow junctions realization by laser annealing : applications to UV sensors

Depuis les années 1970, la taille des composants n’a cessé de diminuer. La réalisation de jonctions ultra-minces et fortement dopées est devenue un point clef dans la réduction des dispositifs microélectroniques. Les techniques de production doivent évoluer afin de répondre aux spécifications drastiques, en termes de taille des zones dopées et de leurs propriétés électriques, des prochains noeuds technologiques. Dans ce travail de thèse nous avons étudié le procédé d’activation au laser de dopants implantés par immersion plasma. Le laser à excimère utilisé (ArF) est absorbé dans moins de 10 nmde silicium, ce qui va permettre un recuit local. De plus, la courte durée d’impulsion va assurer un faible budget thermique, limitant la diffusion des dopants. En associant cette technique à l’implantation ionique par immersion plasma, dont l’intérêt est de pouvoir travailler à de très basses tensions d’accélération (quelques dizaines d’eV), nous pouvons réaliser des jonctions avec un fort taux d’activation sans diffusion. Après avoir présenté les différentes techniques de dopage pouvant être utilisées, nous avons décrit les dispositifs expérimentaux de traitement et de caractérisation utilisés. Des simulations ont permis de comprendre le rôle des paramètres laser sur le profil de température du siliciumen surface. Après avoir choisi le laser le plus adapté parmi les lasers ArF, KrF et XeCl (respectivement: 193 nm - 15 ns, 248 nm - 35 ns, 308 nm - 50 ns), nous avons observé l’effet du nombre de tirs et de la mise en forme de faisceau afin d’optimiser le procédé. Pour terminer, des inhomogénéités dues aux bords de faisceau ont été mises en évidence et étudiées afin d’enlimiter l’effet. / Since the 1970’s, the components size has steadily declined. The realization of highly-dopedultra shallow junctions became a key point in the reduction of microelectronic devices. Them anufacturing processes must evolve to meet the stringent specifications of the next technologynodes, in particular in terms of dimension and electrical properties of the doped area.In this thesis we have studied the process of laser annealing of dopants implanted by plasmaimmersion. The ArF excimer laser we used is absorbed in less than 10 nm of silicon, whichallows a local heating. Moreover, the short pulse duration provides a low thermal budget whichreduces the dopant diffusion. By combining this technique with plasma immersion ion implantation, which is interesting because of the very low acceleration voltage (few tens of eV), we can produce highly activated junctions without diffusion. After a presentation of the different doping techniques that may be used, we describe the experimental treatment and the characterization tools that we used. We have used numerical simulations to understand the role of the laser parameters on the temperature profile of the silicon surface. After choosing the most suitable laser between ArF, KrF and XeCl (respectively :193 nm - 15 ns, 248 nm - 35 ns, 308 nm - 50 ns), we studied the influence of the number of shots and beam shaping to optimize the process. Finally, inhomogeneities caused by the beam edgeshave been studied and identified in order to improve the laser scan process.

Identiferoai:union.ndltd.org:theses.fr/2010AIX22114
Date23 November 2010
CreatorsLarmande, Yannick
ContributorsAix-Marseille 2, Delaporte, Philippe, Sarnet, Thierry
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds