Return to search

Imagerie multispectrale, vers une conception adaptée à la détection de cibles

L'imagerie hyperspectrale, qui consiste à acquérir l'image d'une scène dans un grand nombre de bandes spectrales, permet de détecter des cibles là où l'imagerie couleur classique ne permettrait pas de conclure. Les imageurs hyperspectraux à acquisition séquentielle sont inadaptés aux applications de détection en temps réel. Dans cette thèse, nous proposons d'utiliser un imageur multispectral snapshot, capable d'acquérir simultanément un nombre réduit de bandes spectrales sur un unique détecteur matriciel. Le capteur offrant un nombre de pixels limité, il est nécessaire de réaliser un compromis en choisissant soigneusement le nombre et les profils spectraux des filtres de l'imageur afin d'optimiser la performance de détection. Dans cet objectif, nous avons développé une méthode de sélection de bandes qui peut être utilisée dans la conception d'imageurs multispectraux basés sur une matrice de filtres fixes ou accordables. Nous montrons, à partir d'images hyperspectrales issues de différentes campagnes de mesure, que la sélection des bandes spectrales à acquérir peut conduire à des imageurs multispectraux capables de détecter des cibles ou des anomalies avec une efficacité de détection proche de celle obtenue avec une résolution hyperspectrale. Nous développons conjointement un démonstrateur constitué d'une matrice de 4 filtres de Fabry-Perot accordables électroniquement en vue de son implantation sur un imageur multispectral snapshot agile. Ces filtres sont développés en technologie MOEMS (microsystèmes opto-électro-mécaniques) en partenariat avec l'Institut d'Electronique Fondamentale. Nous présentons le dimensionnement optique du dispositif ainsi qu'une étude de tolérancement qui a permis de valider sa faisabilité.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00714207
Date01 December 2011
CreatorsMinet, Jean
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0702 seconds