Spelling suggestions: "subject:"sélection dde bandes"" "subject:"sélection dee bandes""
1 |
Band selection in hyperspectral images using artificial neural networks / Sélection de bandes d’images hyperspectrales basée sur réseau de neuronesHabermann, Mateus 27 September 2018 (has links)
Les images hyperspectrales (HSI) fournissent des informations spectrales détaillées sur les objets analysés. Étant donné que différents matériaux ont des signatures spectrales distinctes, les objets ayant des couleurs et des formes similaires peuvent être distingués dans le domaine spectral. Toutefois, l’énorme quantité de données peut poser des problèmes en termes de stockage et de transmission des données. De plus, la haute dimensionnalité des images hyperspectrales peut entraîner un surajustement du classificateur en cas de données d'apprentissage insuffisantes. Une façon de résoudre de tels problèmes consiste à effectuer une sélection de bande (BS), car elle réduit la taille du jeu de données tout en conservant des informations utiles et originales. Dans cette thèse, nous proposons trois méthodes de sélection de bande différentes. La première est supervisée, conçu pour utiliser seulement 20% des données disponibles. Pour chaque classe du jeu de données, une classification binaire un contre tous utilisant un réseau de neurones est effectuée et les bandes liées aux poids le plus grand et le plus petit sont sélectionnées. Au cours de ce processus, les bandes les plus corrélées avec les bandes déjà sélectionnées sont rejetées. Par conséquent, la méthode proposée peut être considérée comme une approche de sélection de bande orientée par des classes. La deuxième méthode que nous proposons est une version non supervisée du premier framework. Au lieu d'utiliser les informations de classe, l'algorithme K-Means est utilisé pour effectuer une classification binaire successive de l'ensemble de données. Pour chaque paire de grappes, un réseau de neurones à une seule couche est utilisé pour rechercher l'hyperplan de séparation, puis la sélection des bandes est effectuée comme décrit précédemment. Pour la troisième méthode de BS proposée, nous tirons parti de la nature non supervisée des auto-encodeurs. Pendant la phase d'apprentissage, le vecteur d'entrée est soumis au bruit de masquage. Certaines positions de ce vecteur sont basculées de manière aléatoire sur zéro et l'erreur de reconstruction est calculée sur la base du vecteur d'entrée non corrompu. Plus l'erreur est importante, plus les fonctionnalités masquées sont importantes. Ainsi, à la fin, il est possible d'avoir un classement des bandes spectrales de l'ensemble de données. / Hyperspectral images (HSIs) are capable of providing a detailed spectral information about scenes or objects under analysis. It is possible thanks to both numerous and contiguous bands contained in such images. Given that di_erent materials have distinct spectral signatures, objects that have similar colors and shape can be distinguished in the spectral domain that goes beyond the visual range. However, in a pattern recognition system, the huge amount of data contained in HSIs may pose problems in terms of data storage and transmission. Also, the high dimensionality of hyperspectral images can cause the overfitting of the classifer in case of insufficient training data. One way to solve such problems is to perform band selection(BS) in HSIs, because it decreases the size of the dataset while keeping both useful and original information. In this thesis, we propose three different band selection frameworks. The first one is a supervised one, and it is designed to use only 20% of the available training data. For each class in the dataset, a binary one-versus-all classification using a single-layer neural network is performed, and the bands linked to the largest and smallest coefficients of the resulting hyperplane are selected. During this process, the most correlated bands with the bands already selected are automatically discarded, following a procedure also proposed in this thesis. Consequently, the proposed method may be seen as a classoriented band selection approach, allowing a BS criterion that meets the needs of each class. The second method we propose is an unsupervised version of the first framework. Instead of using the class information, the K-Means algorithm is used to perform successive binary clustering of the dataset. For each pair of clusters, a single-layer neural network is used to find the separating hyperplane, then the selection of bands is done as previously described. For the third proposed BS framework, we take advantage of the unsupervised nature of autoencoders. During the training phase, the input vector is subjected to masking Noise - some positions of this vector are randomly flipped to zero and the reconstruction error is calculated based on the uncorrupted input vector. The bigger the error, the more important the masked features are. Thus, at the end, it is possible to have a ranking of the spectral bands of the dataset.
|
2 |
Imagerie multispectrale, vers une conception adaptée à la détection de ciblesMinet, Jean 01 December 2011 (has links) (PDF)
L'imagerie hyperspectrale, qui consiste à acquérir l'image d'une scène dans un grand nombre de bandes spectrales, permet de détecter des cibles là où l'imagerie couleur classique ne permettrait pas de conclure. Les imageurs hyperspectraux à acquisition séquentielle sont inadaptés aux applications de détection en temps réel. Dans cette thèse, nous proposons d'utiliser un imageur multispectral snapshot, capable d'acquérir simultanément un nombre réduit de bandes spectrales sur un unique détecteur matriciel. Le capteur offrant un nombre de pixels limité, il est nécessaire de réaliser un compromis en choisissant soigneusement le nombre et les profils spectraux des filtres de l'imageur afin d'optimiser la performance de détection. Dans cet objectif, nous avons développé une méthode de sélection de bandes qui peut être utilisée dans la conception d'imageurs multispectraux basés sur une matrice de filtres fixes ou accordables. Nous montrons, à partir d'images hyperspectrales issues de différentes campagnes de mesure, que la sélection des bandes spectrales à acquérir peut conduire à des imageurs multispectraux capables de détecter des cibles ou des anomalies avec une efficacité de détection proche de celle obtenue avec une résolution hyperspectrale. Nous développons conjointement un démonstrateur constitué d'une matrice de 4 filtres de Fabry-Perot accordables électroniquement en vue de son implantation sur un imageur multispectral snapshot agile. Ces filtres sont développés en technologie MOEMS (microsystèmes opto-électro-mécaniques) en partenariat avec l'Institut d'Electronique Fondamentale. Nous présentons le dimensionnement optique du dispositif ainsi qu'une étude de tolérancement qui a permis de valider sa faisabilité.
|
3 |
Imagerie multispectrale, vers une conception adaptée à la détection de cibles / Multispectral imaging, a target detection oriented designMinet, Jean 01 December 2011 (has links)
L’imagerie hyperspectrale, qui consiste à acquérir l'image d'une scène dans un grand nombre de bandes spectrales, permet de détecter des cibles là où l'imagerie couleur classique ne permettrait pas de conclure. Les imageurs hyperspectraux à acquisition séquentielle sont inadaptés aux applications de détection en temps réel. Dans cette thèse, nous proposons d’utiliser un imageur multispectral snapshot, capable d’acquérir simultanément un nombre réduit de bandes spectrales sur un unique détecteur matriciel. Le capteur offrant un nombre de pixels limité, il est nécessaire de réaliser un compromis en choisissant soigneusement le nombre et les profils spectraux des filtres de l'imageur afin d’optimiser la performance de détection. Dans cet objectif, nous avons développé une méthode de sélection de bandes qui peut être utilisée dans la conception d’imageurs multispectraux basés sur une matrice de filtres fixes ou accordables. Nous montrons, à partir d'images hyperspectrales issues de différentes campagnes de mesure, que la sélection des bandes spectrales à acquérir peut conduire à des imageurs multispectraux capables de détecter des cibles ou des anomalies avec une efficacité de détection proche de celle obtenue avec une résolution hyperspectrale. Nous développons conjointement un démonstrateur constitué d'une matrice de 4 filtres de Fabry-Perot accordables électroniquement en vue de son implantation sur un imageur multispectral snapshot agile. Ces filtres sont développés en technologie MOEMS (microsystèmes opto-électro-mécaniques) en partenariat avec l'Institut d'Electronique Fondamentale. Nous présentons le dimensionnement optique du dispositif ainsi qu'une étude de tolérancement qui a permis de valider sa faisabilité. / Hyperspectral imaging, which consists in acquiring the image of a scene in a large number of spectral bands, can be used to detect targets that are not visible using conventional color imaging. Hyperspectral imagers based on sequential acquisition are unsuitable for real-time detection applications. In this thesis, we propose to use a snapshot multispectral imager able to acquire simultaneously a small number of spectral bands on a single image sensor. As the sensor offers a limited number of pixels, it is necessary to achieve a trade-off by carefully choosing the number and the spectral profiles of the imager’s filters in order to optimize the detection performance. For this purpose, we developed a band selection method that can be used to design multispectral imagers based on arrays of fixed or tunable filters. We use real hyperspectral images to show that the selection of spectral bands can lead to multispectral imagers able to compete against hyperspectral imagers for target detection and anomaly detection applications while allowing snapshot acquisition and real-time detection. We jointly develop an adaptive snapshot multispectral imager based on an array of 4 electronically tunable Fabry-Perot filters. The filters are developed in MOEMS technology (Micro-Opto-Electro-Mechanical Systems) in partnership with the Institut d'Electronique Fondamentale. We present the optical design of the device and a study of tolerancing which has validated its feasibility.
|
4 |
Interprétation sémantique d'images hyperspectrales basée sur la réduction adaptative de dimensionnalité / Semantic interpretation of hyperspectral images based on the adaptative reduction of dimensionalitySellami, Akrem 11 December 2017 (has links)
L'imagerie hyperspectrale permet d'acquérir des informations spectrales riches d'une scène dans plusieurs centaines, voire milliers de bandes spectrales étroites et contiguës. Cependant, avec le nombre élevé de bandes spectrales, la forte corrélation inter-bandes spectrales et la redondance de l'information spectro-spatiale, l'interprétation de ces données hyperspectrales massives est l'un des défis majeurs pour la communauté scientifique de la télédétection. Dans ce contexte, le grand défi posé est la réduction du nombre de bandes spectrales inutiles, c'est-à-dire de réduire la redondance et la forte corrélation de bandes spectrales tout en préservant l'information pertinente. Par conséquent, des approches de projection visent à transformer les données hyperspectrales dans un sous-espace réduit en combinant toutes les bandes spectrales originales. En outre, des approches de sélection de bandes tentent à chercher un sous-ensemble de bandes spectrales pertinentes. Dans cette thèse, nous nous intéressons d'abord à la classification d'imagerie hyperspectrale en essayant d'intégrer l'information spectro-spatiale dans la réduction de dimensions pour améliorer la performance de la classification et s'affranchir de la perte de l'information spatiale dans les approches de projection. De ce fait, nous proposons un modèle hybride permettant de préserver l'information spectro-spatiale en exploitant les tenseurs dans l'approche de projection préservant la localité (TLPP) et d'utiliser l'approche de sélection non supervisée de bandes spectrales discriminantes à base de contraintes (CBS). Pour modéliser l'incertitude et l'imperfection entachant ces approches de réduction et les classifieurs, nous proposons une approche évidentielle basée sur la théorie de Dempster-Shafer (DST). Dans un second temps, nous essayons d'étendre le modèle hybride en exploitant des connaissances sémantiques extraites à travers les caractéristiques obtenues par l'approche proposée auparavant TLPP pour enrichir la sélection non supervisée CBS. En effet, l'approche proposée permet de sélectionner des bandes spectrales pertinentes qui sont à la fois informatives, discriminantes, distinctives et peu redondantes. En outre, cette approche sélectionne les bandes discriminantes et distinctives en utilisant la technique de CBS en injectant la sémantique extraite par les techniques d'extraction de connaissances afin de sélectionner d'une manière automatique et adaptative le sous-ensemble optimal de bandes spectrales pertinentes. La performance de notre approche est évaluée en utilisant plusieurs jeux des données hyperspectrales réelles. / Hyperspectral imagery allows to acquire a rich spectral information of a scene in several hundred or even thousands of narrow and contiguous spectral bands. However, with the high number of spectral bands, the strong inter-bands spectral correlation and the redundancy of spectro-spatial information, the interpretation of these massive hyperspectral data is one of the major challenges for the remote sensing scientific community. In this context, the major challenge is to reduce the number of unnecessary spectral bands, that is, to reduce the redundancy and high correlation of spectral bands while preserving the relevant information. Therefore, projection approaches aim to transform the hyperspectral data into a reduced subspace by combining all original spectral bands. In addition, band selection approaches attempt to find a subset of relevant spectral bands. In this thesis, firstly we focus on hyperspectral images classification attempting to integrate the spectro-spatial information into dimension reduction in order to improve the classification performance and to overcome the loss of spatial information in projection approaches.Therefore, we propose a hybrid model to preserve the spectro-spatial information exploiting the tensor model in the locality preserving projection approach (TLPP) and to use the constraint band selection (CBS) as unsupervised approach to select the discriminant spectral bands. To model the uncertainty and imperfection of these reduction approaches and classifiers, we propose an evidential approach based on the Dempster-Shafer Theory (DST). In the second step, we try to extend the hybrid model by exploiting the semantic knowledge extracted through the features obtained by the previously proposed approach TLPP to enrich the CBS technique. Indeed, the proposed approach makes it possible to select a relevant spectral bands which are at the same time informative, discriminant, distinctive and not very redundant. In fact, this approach selects the discriminant and distinctive spectral bands using the CBS technique injecting the extracted rules obtained with knowledge extraction techniques to automatically and adaptively select the optimal subset of relevant spectral bands. The performance of our approach is evaluated using several real hyperspectral data.
|
5 |
Nouvel Algorithme pour la Réduction de la Dimensionnalité en Imagerie HyperspectraleKhoder, Jihan 24 October 2013 (has links) (PDF)
En Imagerie hyperspectrale, les volumes de données acquises atteignent souvent le gigaoctet pour une seule et même scène observée. De ce fait, l'analyse de ces données au contenu physique complexe passe obligatoirement par une étape préliminaire de réduction de la dimensionnalité. Cette réduction a un double objectif, le premier consiste à réduire la redondance et le second permet de faciliter les traitements postérieurs (extraction, classification et reconnaissance de formes) et donc l'interprétation des données. La classification automatique est une étape importante du processus d'extraction de connaissances à partir des données. Elle vise à découvrir la structure intrinsèque d'un ensemble d'objets en formant des regroupements qui partagent des caractéristiques similaires. Dans cette thèse, nous nous intéressons à la réduction de dimension dans le cadre de la classification non supervisée des bandes spectrales. Différentes approches existent, comme celles basées sur la projection (linéaire ou non-linéaire) des données de grandes dimensions sur des sous-espaces de représentation bien choisis ou sur les techniques de sélection de bandes spectrales exploitant des critères de complémentarité-redondance d'information qui ne permettent pas de préserver toute la richesse de l'information apportée par ce type de données. 1 - Nous avons accompli une étude comparative, sur la stabilité et la similarité des algorithmes des méthodes non paramétriques et non supervisée de la projection et aussi de la sélection des bandes utilisées dans la réduction de la dimensionnalité à différents niveaux de bruit déterminés. Les tests sont effectués sur des images hyperspectrales, en classant ces derniers en trois catégories selon leur degré de performance de préserver la quantité d'informations. 2 - Nous avons introduit une nouvelle approche de critère basée sur la di-similarité des attributs spectraux et utilisée dans un espace local sur des matrices de données ; L'approche a servi pour définir un taux de préservation d'un évènement rare dans une transformation mathématique donnée. Cependant, nous avons limitée son application au contexte de la thèse liée à la réduction de la taille des données dans une image hyperspectrale. 3 - Les études comparatives ont permis une première proposition d'approche hybride pour la reduction de la taille d'une image hyperspectrale permettant une meilleure stabilité : BandClustering avec Multidimensional Scaling (MDS). Des exemples sont donnés pour démontrer l'originalité et la pertinence de l'hybridation (BandClust / MDS) de l'analyse effectuée. 4 - La tendance de l'hybridation a été généralisée par la suite en présentant un algorithme hybride adaptatif non supervisé basé sur la logique flou (Fuzzy C means), une méthode de projection comme l'analyse en composante principale (ACP) et un indice de validité d'une classification. Les classifications effectuées par Fuzzy C means permettent d'affecter chaque pixel d'une image hyperspectrale à toutes les classes avec des degrés d'appartenance variant entre 0 et 1. Cette propriété rend la méthode FCM intéressante pour la mise en évidence soit des transitions progressives entre les différentes bandes spectrales ou des hétérogénéités spectrales. Grâce à des méthodes conventionnelles appelées indices de validité de classes, nous avons déterminé le nombre optimal de classes de FCM ainsi que le paramètre de flou. Nous montrons que cette hybridation conduit à un taux de réduction pertinent dans l'imagerie hyperspectrale. Par conséquent, Cet algorithme appliqué à différents échantillons de données hyperspectrales, permet une imagerie spectrale beaucoup plus informative, notamment au niveau de l'hétérogénéité spectrale.
|
Page generated in 0.1352 seconds