Dark Matter (DM) is believed to consist ofWeakly Interactive Massive Particles (WIMPs) which interact only through gravity and the weak nuclear force. These particles can become trapped in gravitational wells such as the Sun and a theoretical value of the capture rate can be calculated. At high particle density the WIMPs annihilating spontaneously into Standard Model (SM) particles. Due to particle equilibrium the total annihilation rate can be related to the capture rate by a simple expression. This report will focus on calculating the capture rate and the related annihilation rate as well as calculating the neutrino ux of the Sun. At rst we will give a brief introduction to cosmology and a theoretical argument for the WIMPs as the prime DM candidate. Then we will look at the theoretical background and the mechanism through which WIMPs become trapped and evaporate or annihilate. Finally we will perform a numerical analysis of the WIMP cycle within the Sun and calculate the capture rate for a variety of theoretical WIMP masses. We will look at the capture rate due to scattering both by hydrogen nucleii and by more massive elements. The Scattering by hydrogen will be the prime contributor to the total capture rate and is the only spin dependent contribution.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-127024 |
Date | January 2013 |
Creators | Hansen, Fredrik, Holmgren, Erik |
Publisher | KTH, Teoretisk fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds