This thesis gives a research on developing an automatic or guided-automatic tool to predict the hardware (HW) resource occupation, namely task load, with respect to the software (SW) application algorithm parameters in an LTE base station. For the signal processing in an LTE base station it is important to get knowledge of how many HW resources will be used when applying a SW algorithm on a specic platform. The information is valuable for one to know the system and platform better, which can facilitate a reasonable use of the available resources. The process of developing the tool is considered to be the process of building a mathematical model between HW task load and SW parameters, where the process is dened as function approximation. According to the universal approximation theorem, the problem can be solved by an intelligent method called articial neural networks (ANNs). The theorem indicates that any function can be approximated with a two-layered neural network as long as the activation function and number of hidden neurons are proper. The thesis documents a work ow on building the model with the ANN method, as well as some research on data subset selection with mathematical methods, such as Partial Correlation and Sequential Searching as a data pre-processing step for the ANN approach. In order to make the data selection method suitable for ANNs, a modication has been made on Sequential Searching method, which gives a better result. The results show that it is possible to develop such a guided-automatic tool for prediction purposes in LTE baseband signal processing under specic precision constraints. Compared to other approaches, this model tool with intelligent approach has a higher precision level and a better adaptivity, meaning that it can be used in any part of the platform even though the transmission channels are dierent. / Denna avhandling utvecklar ett automatiskt eller ett guidat automatiskt verktyg for att forutsaga behov av hardvaruresurser, ocksa kallat uppgiftsbelastning, med avseende pa programvarans algoritmparametrar i en LTE basstation. I signalbehandling i en LTE basstation, ar det viktigt att fa kunskap om hur mycket av hardvarans resurser som kommer att tas i bruk nar en programvara ska koras pa en viss plattform. Informationen ar vardefull for nagon att forsta systemet och plattformen battre, vilket kan mojliggora en rimlig anvandning av tillgangliga resurser. Processen att utveckla verktyget anses vara processen att bygga en matematisk modell mellan hardvarans belastning och programvaruparametrarna, dar processen denieras som approximation av en funktion. Enligt den universella approximationssatsen, kan problemet losas genom en intelligent metod som kallas articiella neuronnat (ANN). Satsen visar att en godtycklig funktion kan approximeras med ett tva-skiktS neuralt natverk sa lange aktiveringsfunktionen och antalet dolda neuroner ar korrekt. Avhandlingen dokumenterar ett arbets- ode for att bygga modellen med ANN-metoden, samt studerar matematiska metoder for val av delmangder av data, sasom Partiell korrelation och sekventiell sokning som dataforbehandlingssteg for ANN. For att gora valet av uppgifter som lampar sig for ANN har en andring gjorts i den sekventiella sokmetoden, som ger battre resultat. Resultaten visar att det ar mojligt att utveckla ett sadant guidat automatiskt verktyg for prediktionsandamal i LTE basbandssignalbehandling under specika precisions begransningar. Jamfort med andra metoder, har dessa modellverktyg med intelligent tillvagagangssatt en hogre precisionsniva och battre adaptivitet, vilket innebar att den kan anvandas i godtycklig del av plattformen aven om overforingskanalerna ar olika.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-160947 |
Date | January 2014 |
Creators | Wang, Lu |
Publisher | KTH, Signalbehandling |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | EES Examensarbete / Master Thesis ; XR-EE-SB 2014:013 |
Page generated in 0.0025 seconds