Return to search

Nonlinear parameter estimation of experimental cake filtration data

Diese Arbeit stellt die nichtlineare Parameterschätzung als alternative Auswertemethode von Kuchenfiltrationsexperimenten vor. Anhand eines größeren Datensatzes werden die Vorteile dieser Methode gegenüber der verbreiteten Auswertung mittels einer linearisierten Form der Kuchenfiltrationsgleichung für den Fall konstanten Drucks gezeigt. Zur Bewertung der Anpassungsgüte werden Residuenplots erläutert und verwendet. Die Unterschiede der Ergebnisse bewegen sich im Bereich von 5 bis 15% bei der Bestimmung des spezifischen Kuchenfiltrationswiderstands, welcher der wichtigste Parameter bei der Auslegung von Filtrationsapparaten ist. Weitere Möglichkeiten der Auswertung werden aufgezeigt, die durch die nichtlineare Parameterschätzung möglich werden, darunter die Auswertung von Experimenten bei variablem Druck, die Bestimmung des Kuchenwiderstands kompressibler Feststoffsysteme sowie eine Bewertung der anfänglichen Verblockungsvorgänge am Filtermedium.:1 Introduction
2 Cake Filtration Theory
2.1 Historical Development
2.2 Derivation of the Cake Filtration Equation
2.3 Fit Procedures for Cake Filtration Data
2.4 Additional Methods for Finding the Time Offset
3 Materials and Methods
3.1 Materials
3.2 Filter Medium
3.3 Laboratory Pressure Filters
3.4 Example Dataset
3.5 Preparation of Example Dataset
3.6 Residual Plots and Chi-Squares
3.7 Bootstrapped Statistics
4 Proposed Fit Procedure
4.1 Nonlinear Regression
4.2 Region of Best Fit
5 Results and Discussion
5.1 Constant-Pressure Filtration
5.2 Hermans & Bredée Models
5.3 Residual Plots of Fit Results
5.4 Nonconstant Filtration
5.5 Compressibility Effects
5.6 Optimal Parameter Definition
5.7 The Role of the t/V-V-Diagram
6 Conclusions
7 Outlook
7.1 Constant-Flux Filtration
7.2 Inline Resistance Measurements
7.3 Parameter Estimation in Chemical Engineering
A Appendix
A.1 The Concentration Parameter
A.2 Obsolete Fit Methods
A.3 Residual Statistics
A.4 Bootstrapped Statistics Data
A.5 Fit Example in Microsoft Excel
A.6 Experimental Data and Metadata
B References / This thesis presents nonlinear parameter estimation as an alternative method for the evaluation of cake filtration experiments. A dataset of 225 constant-pressure filtration experiments is used to highlight the advantages of this method compared to the widely used evaluation method which uses a linear transformation of the cake filtration equation. The goodness-of-fit is tested through the means of residual plots, which are introduced and discussed. The difference in results for the two methods for the specific cake resistance parameter, which is the most important parameter in the dimensioning of filtration apparatused, lies between 5 and 15%. Further possibilities of evaluation are presented, which become possible through the use of nonlinear parameter estimation, such as: evaluation of filtration experiments with nonconstant pressure, the determination of cake resistances for compressible systems, and the investigation of the processes present in the beginning stages of cake filtration.:1 Introduction
2 Cake Filtration Theory
2.1 Historical Development
2.2 Derivation of the Cake Filtration Equation
2.3 Fit Procedures for Cake Filtration Data
2.4 Additional Methods for Finding the Time Offset
3 Materials and Methods
3.1 Materials
3.2 Filter Medium
3.3 Laboratory Pressure Filters
3.4 Example Dataset
3.5 Preparation of Example Dataset
3.6 Residual Plots and Chi-Squares
3.7 Bootstrapped Statistics
4 Proposed Fit Procedure
4.1 Nonlinear Regression
4.2 Region of Best Fit
5 Results and Discussion
5.1 Constant-Pressure Filtration
5.2 Hermans & Bredée Models
5.3 Residual Plots of Fit Results
5.4 Nonconstant Filtration
5.5 Compressibility Effects
5.6 Optimal Parameter Definition
5.7 The Role of the t/V-V-Diagram
6 Conclusions
7 Outlook
7.1 Constant-Flux Filtration
7.2 Inline Resistance Measurements
7.3 Parameter Estimation in Chemical Engineering
A Appendix
A.1 The Concentration Parameter
A.2 Obsolete Fit Methods
A.3 Residual Statistics
A.4 Bootstrapped Statistics Data
A.5 Fit Example in Microsoft Excel
A.6 Experimental Data and Metadata
B References

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76974
Date20 January 2022
CreatorsBuchwald, Thomas
ContributorsPeuker, Urs, Briesen, Heiko, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationhttp://dx.doi.org/10.25532/OPARA-147

Page generated in 0.0023 seconds