Large datasets are a crucial requirement to achieve high performance, accuracy, and generalisation for any machine learning task, such as prediction or anomaly detection, However, it is not uncommon for datasets to be small or imbalanced since gathering data can be difficult, time-consuming, and expensive. In the task of collecting vehicle sensor time series data, in particular when the vehicle has an abnormal behaviour, these struggles are present and may hinder the automotive industry in its development. Synthetic data generation has become a growing interest among researchers in several fields to handle the struggles with data gathering. Among the methods explored for generating data, generative adversarial networks (GANs) have become a popular approach due to their wide application domain and successful performance. This thesis focuses on generating multivariate time series data that are similar to vehicle sensor readings from the air pressures in the brake system of vehicles with an abnormal behaviour, meaning there is a leakage somewhere in the system. A novel GAN architecture called TimeGAN was trained to generate such data and was then evaluated using both qualitative and quantitative evaluation metrics. Two versions of this model were tested and compared. The results obtained proved that both models learnt the distribution and the underlying information within the features of the real data. The goal of the thesis was achieved and can become a foundation for future work in this field. / När man applicerar en modell för att utföra en maskininlärningsuppgift, till exempel att förutsäga utfall eller upptäcka avvikelser, är det viktigt med stora dataset för att uppnå hög prestanda, noggrannhet och generalisering. Det är dock inte ovanligt att dataset är små eller obalanserade eftersom insamling av data kan vara svårt, tidskrävande och dyrt. När man vill samla tidsserier från sensorer på fordon är dessa problem närvarande och de kan hindra bilindustrin i dess utveckling. Generering av syntetisk data har blivit ett växande intresse bland forskare inom flera områden som ett sätt att hantera problemen med datainsamling. Bland de metoder som undersökts för att generera data har generative adversarial networks (GANs) blivit ett populärt tillvägagångssätt i forskningsvärlden på grund av dess breda applikationsdomän och dess framgångsrika resultat. Denna avhandling fokuserar på att generera flerdimensionell tidsseriedata som liknar fordonssensoravläsningar av lufttryck i bromssystemet av fordon med onormalt beteende, vilket innebär att det finns ett läckage i systemet. En ny GAN modell kallad TimeGAN tränades för att genera sådan data och utvärderades sedan både kvalitativt och kvantitativt. Två versioner av denna modell testades och jämfördes. De erhållna resultaten visade att båda modellerna lärde sig distributionen och den underliggande informationen inom de olika signalerna i den verkliga datan. Målet med denna avhandling uppnåddes och kan lägga grunden för framtida arbete inom detta område.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-302644 |
Date | January 2021 |
Creators | Nord, Sofia |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:511 |
Page generated in 0.0029 seconds