Return to search

Almost Completely Decomposable Groups of Type (1,2) / Fast vollständig zerlegbare Gruppen vom Typ (1,2)

A torsion free abelian group of finite rank is called almost completely decomposable if it has a completely decomposable subgroup of finite index. A p-local, p-reduced almost completely decomposable group of type (1,2) is briefly called a (1,2)-group. Almost completely decomposable groups can be represented by matrices over the ring Z/hZ, where h is the exponent of the regulator quotient. This particular choice of representation allows for a better investigation of the decomposability of the group. Arnold and Dugas showed in several of their works that (1,2)-groups with regulator quotient of exponent at least p^7 allow infinitely many isomorphism types of indecomposable groups. It is not known if the exponent 7 is minimal. In this dissertation, this problem is addressed. / Eine fast vollständig zerlegbare Gruppe ist eine torsionsfreie abelsche Gruppe endlichen Ranges,die eine vollständig zerlegbare Untergruppe von endlichem Index enthält. Fast vollständig zerlegbare Gruppen gestatten eine Darstellung durch Matrizen über dem Ring Z/hZ, wobei h der Exponent des Regulatorquotienten ist. Auf dieser Matrixdarstellung aufsetzend kann man das Zerlegungsverhalten von Gruppen untersuchen. Arnold und Dugas haben in mehreren Arbeiten gezeigt, dass es unendlich viele Isomorphietypen unzerlegbarer fast vollständig zerlegbarer Gruppen gibt,sobald der Exponent des Regulatorquotienten grösser gleich sieben ist. Allerdings ist unbekannt, ob sieben der kleinste Exponent mit dieser Eigenschaft ist. Wir untersuchen dieses Problem für p-lokale fast vollständig zerlegbare Gruppen vom Typ (1,2).

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2121
Date January 2007
CreatorsSolak, Ebru
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds