Im Rahmen dieser Arbeit werden Untersuchungen an zweidimensionalen elektronischen Strukturen von (111)-orientierten Edelmetalloberflächen und deren Beeinflussung durch verschiedene Adsorbate präsentiert. Das Hauptaugenmerk liegt hierbei auf den an Oberflächen lokalisierten Shockley-Zuständen von Cu, Ag und Au, deren Banddispersion (Bindungsenergie, Bandmasse und Spin-Bahn-Aufspaltung) sich als sensible Sonde für Oberflächenmodifikationen durch Adsorptionprozesse herausstellt. Winkelaufgelöste Photoelektronenspektroskopie erlaubt hierbei den experimentellen Zugang zu bereits feinen Veränderungen der elektronischen Bandstruktur dieser zweidimensionalen Systeme. Verschiedene Mechanismen, die sich an Oberflächen und Adsorbat/Substrat-Grenzflächen abspielen wirken sich in unterschiedlicher Weise auf den Shockley-Zustand aus und werden anhand von geeigneten Modelladsorbatsystemen untersucht. Die experimentellen Ergebnisse werden mit geeigneten Modellen, wie dem Phasenakkumulationsmodell und dem Modell fast freier Elektronen, und teilweise mit ab initio-Rechnungen gemäß der Dichtefunktionaltheorie verglichen, was eine Einbettung der Resultate in einen gemeinsamen Kontext erlaubt. So wird der Einfluss der Adsorption von Submonolagen von Na auf den Au-Oberflächenzustand im Hinblick auf die signifikante Austrittsarbeitsänderung der Oberfläche untersucht. Eine systematische Studie der Physisorption von Edelgasen zeigt die Auswirkung der repulsiven Wechselwirkung von Adsorbat und Substrat auf die Elektronen im Oberflächenzustandsband. Eine schrittweise Bedeckung der Oberfläche von Cu und Au(111) mit Ag-Monolagen bedingt eine graduelle Veränderung des Oberflächenpotenzials und verursacht einen zunehmende Ag-Charakter des Shockley-Zustands. Für N ≥ 7 ML dicke, lagenweise wachsende Ag-Schichten auf Au(111) werden im Experiment neue zweidimensionale elektronische Strukturen beobachtet, die den Quantentrogzuständen des Ag-Films zugeordnet werden. Inwiefern sie innerhalb der Ag-Schicht lokalisiert sind oder sich noch zu einem wesentlichen Anteil im Substrat befinden, zeigt die Untersuchung ihrer energetischen und räumlichen Evolution mit der Ag-Schichtdicke N. Dazu wurden neben der Bindungsenergie auch die Photoemissionsintensität der Quantentrogzustände vermessen, die Aussagen über die Lokalisierung erlauben, welche mit Ergebnissen aus Dichtefunktionalrechnungen verglichen werden. Schließlich wird anhand der Xe-Adsorption auf unterschiedlich dicken Ag-Filmen auf Cu und Au(111) gezeigt, dass der Oberflächenzustand nicht nur als Sonde für Adsorptionsmechanismen dient, sondern selbst das Adsorptionsverhalten maßgeblich mitbestimmt. Ein Erklärungsmodell wird vorgestellt, welches neben der durch die Bandstruktur bestimmte Zustandsdichte auch die Lokalisierung der Ladungsdichte an der Oberfläche berücksichtigt, um ein Maß für die Stärke der repulsiven Wechselwirkung zu beschreiben, die Edelgasadsorbate auf den Oberflächen erfahren. / In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It will chiefly focus on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N ≥ 7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the binding energy analysis, the photoemission intensity of the quantum well states was determined, giving information about their localization which can be compared with results of density functional calculations. Finally, by the example of Xe adsorption upon Ag layers of various thicknesses on Cu and Au(111), it is shown that besides probing adsorption processes, the surface states itself substantially determine adsorption characteristics. An explanatory model is introduced, which considers both the electronic density of states and the spatial localization of the surface state for describing a measure of the strength of the repulsive interaction between substrate and rare-gas adsorbates.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2056 |
Date | January 2007 |
Creators | Forster, Frank |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds