Return to search

Preenchimento automático de formulários na web oculta / Automatically filling in hiddenweb forms

Muitas informações disponíveis na Web estão armazenadas em bancos de dados on-line e são acessíveis somente após um usuário enviar uma consulta por meio de uma interface de busca. Essas informações estão localizadas em uma parte da Web conhecida como Web Oculta ou Web Profunda e, geralmente, são inacessíveis por máquinas de busca tradicionais. Uma vez que a forma de acessar os dados na Web Oculta se dá por intermédio de submissões de consultas, muitos trabalhos têm focado em como preencher automaticamente campos de formulários. Esta tese apresenta uma metodologia para o preenchimento de formulários na Web Oculta. Além disso, descreve uma categorização das técnicas de preenchimento de formulários existentes no estado da arte de coleta na Web Oculta, produzindo uma análise comparativa entre elas. A solução proposta descreve um método automático para seleção de valores para campos de formulários combinando heurísticas e técnicas de aprendizagem de máquina. Experimentos foram realizados em formulários reais da Web, de vários domínios, e os resultados indicam que a abordagem proposta apresenta desempenho comparável aos obtidos pelas técnicas do estado da arte, sendo inclusive significativamente diferente com base em avaliação estatística. / A large portion of the information on the Web is stored inside online databases. Such information is accessible only after the users submit a query through a search interface. TheWeb portion in which that information is located is called HiddenWeb or DeepWeb, and generally this part is inaccessible by traditional search engines crawlers. Since the only way to access the Hidden Web pages is through the query submissions, many works have focused on how to fill in form fields automatically, aiming at enhancing the amount of distinct information hidden behind Web forms. This thesis presents an automatic solution to value selection for fields in Web forms. The solution combines heuristics and machine learning techniques for improving the selection of values. Furthermore, this proposal also describes a categorization of form filling techniques and a comparative analysis between works in the state of the art. Experiments were conducted on real Web sites and the results indicated that our approach significantly outperforms a baseline method in terms of coverage without additional computational cost.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/107988
Date January 2014
CreatorsKantorski, Gustavo Zanini
ContributorsHeuser, Carlos Alberto, Moreira, Viviane Pereira
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds