• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inférer des objets sémantiques du Web structuré / Deriving semantic objects from the structured web

Oita, Marilena 29 October 2012 (has links)
Cette thèse se concentre sur l'extraction et l'analyse des objets du Web, selon différents points de vue: temporel, structurel, sémantique. Nous commençons par une étude qui porte sur la compréhension des différentes stratégies et meilleures pratiques pour inférer les aspects temporels des pages Web. Pour cette finalité, on présente plus en détail une approche qui utilise des statistiques sur les flux du Web. Nous continuons par la présentation de deux techniques basées sur des mots-clés pour l'extraction d'objets, dans le cadre des pages Web générées dynamiquement par des systèmes de gestion du contenu. Les objets que nous étudions dans ce contexte correspondent à des articles du Web. Les mots-clés, acquis automatiquement, guident le processus d'identification d'objets, soit au niveau d'une seule page Web (SIGFEED) soit sur plusieurs pages différentes qui partagent le même modèle (FOREST). Nous décrivons également un cadre général qui vise à découvrir le modèle sémantique des objets du Web caché. Dans ce contexte, l'objets sont représentés par des enregistrements de données. Ce cadre utilise FOREST pour l'identification des enregistrements dans la page et se base sur l'alignement des instances extraites et des objets mêmes, par rapport à des similitudes de type représentées avec rdf:type dans un graphe étiqueté. Ce graphe est ensuite aligné avec une ontologie générique comme YAGO, pour la découverte des types et leur relations par rapport à l'entité de base qui est résumé par le formulaire Web. / This thesis focuses on the extraction and analysis of Web data objects, investigated from different points of view: temporal, structural, semantic. We first survey different strategies and best practices for deriving temporal aspects of Web pages, together with a more in-depth study on Web feeds for this particular purpose, and other statistics. Next, in the context of dynamically-generated Web pages by content management systems, we present two keyword-based techniques that perform article extraction from such pages. Keywords, automatically acquired, guide the process of object identification, either at the level of a single Web page (SIGFEED), or across different pages sharing the same template (FOREST). We finally present, in the context of the deep Web, a generic framework that aims at discovering the semantic model of a Web object (here, data record) by, first, using FOREST for the extraction of objects, and second, representing the implicit rdf:type similarities between the object attributes and the entity of the form as relationships that, together with the instances extracted from the objects, form a labeled graph. This graph is further aligned to an ontology like YAGO for the discovery of the unknown types and relations.
2

Crosswalks between the deep web and the surface web

Nde Matulová, Hana January 2008 (has links)
Zugl.: Düsseldorf, Univ., Diss., 2008
3

Topic Sensitive SourceRank: Extending SourceRank for Performing Context-SensitiveSearch over Deep-Web

January 2011 (has links)
abstract: Source selection is one of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection models employ query-similarity based local measures for assessing source quality. These local measures are necessary but not sufficient as they are agnostic to source trustworthiness and result importance, which, given the autonomous and uncurated nature of deep-web, have become indispensible for searching deep-web. SourceRank provides a global measure for assessing source quality based on source trustworthiness and result importance. SourceRank's effectiveness has been evaluated in single-topic deep-web environments. The goal of the thesis is to extend sourcerank to a multi-topic deep-web environment. Topic-sensitive sourcerank is introduced as an effective way of extending sourcerank to a deep-web environment containing a set of representative topics. In topic-sensitive sourcerank, multiple sourcerank vectors are created, each biased towards a representative topic. At query time, using the topic of query keywords, a query-topic sensitive, composite sourcerank vector is computed as a linear combination of these pre-computed biased sourcerank vectors. Extensive experiments on more than a thousand sources in multiple domains show 18-85% improvements in result quality over Google Product Search and other existing methods. / Dissertation/Thesis / M.S. Computer Science 2011
4

Deep Web Collection Selection

King, John Douglas January 2004 (has links)
The deep web contains a massive number of collections that are mostly invisible to search engines. These collections often contain high-quality, structured information that cannot be crawled using traditional methods. An important problem is selecting which of these collections to search. Automatic collection selection methods try to solve this problem by suggesting the best subset of deep web collections to search based on a query. A few methods for deep Web collection selection have proposed in Collection Retrieval Inference Network system and Glossary of Servers Server system. The drawback in these methods is that they require communication between the search broker and the collections, and need metadata about each collection. This thesis compares three different sampling methods that do not require communication with the broker or metadata about each collection. It also transforms some traditional information retrieval based techniques to this area. In addition, the thesis tests these techniques using INEX collection for total 18 collections (including 12232 XML documents) and total 36 queries. The experiment shows that the performance of sample-based technique is satisfactory in average.
5

Trust and Profit Sensitive Ranking for the Deep Web and On-line Advertisements

January 2012 (has links)
abstract: Ranking is of definitive importance to both usability and profitability of web information systems. While ranking of results is crucial for the accessibility of information to the user, the ranking of online ads increases the profitability of the search provider. The scope of my thesis includes both search and ad ranking. I consider the emerging problem of ranking the deep web data considering trustworthiness and relevance. I address the end-to-end deep web ranking by focusing on: (i) ranking and selection of the deep web databases (ii) topic sensitive ranking of the sources (iii) ranking the result tuples from the selected databases. Especially, assessing the trustworthiness and relevances of results for ranking is hard since the currently used link analysis is inapplicable (since deep web records do not have links). I formulated a method---namely SourceRank---to assess the trustworthiness and relevance of the sources based on the inter-source agreement. Secondly, I extend the SourceRank to consider the topic of the agreeing sources in multi-topic environments. Further, I formulate a ranking sensitive to trustworthiness and relevance for the individual results returned by the selected sources. For ad ranking, I formulate a generalized ranking function---namely Click Efficiency (CE)---based on a realistic user click model of ads and documents. The CE ranking considers hitherto ignored parameters of perceived relevance and user dissatisfaction. CE ranking guaranteeing optimal utilities for the click model. Interestingly, I show that the existing ad and document ranking functions are reduced forms of the CE ranking under restrictive assumptions. Subsequently, I extend the CE ranking to include a pricing mechanism, designing a complete auction mechanism. My analysis proves several desirable properties including revenue dominance over popular Vickery-Clarke-Groves (VCG) auctions for the same bid vector and existence of a Nash equilibrium in pure strategies. The equilibrium is socially optimal, and revenue equivalent to the truthful VCG equilibrium. Further, I relax the independence assumption in CE ranking and analyze the diversity ranking problem. I show that optimal diversity ranking is NP-Hard in general, and that a constant time approximation algorithm is not likely. / Dissertation/Thesis / Ph.D. Computer Science 2012
6

Preenchimento automático de formulários na web oculta / Automatically filling in hiddenweb forms

Kantorski, Gustavo Zanini January 2014 (has links)
Muitas informações disponíveis na Web estão armazenadas em bancos de dados on-line e são acessíveis somente após um usuário enviar uma consulta por meio de uma interface de busca. Essas informações estão localizadas em uma parte da Web conhecida como Web Oculta ou Web Profunda e, geralmente, são inacessíveis por máquinas de busca tradicionais. Uma vez que a forma de acessar os dados na Web Oculta se dá por intermédio de submissões de consultas, muitos trabalhos têm focado em como preencher automaticamente campos de formulários. Esta tese apresenta uma metodologia para o preenchimento de formulários na Web Oculta. Além disso, descreve uma categorização das técnicas de preenchimento de formulários existentes no estado da arte de coleta na Web Oculta, produzindo uma análise comparativa entre elas. A solução proposta descreve um método automático para seleção de valores para campos de formulários combinando heurísticas e técnicas de aprendizagem de máquina. Experimentos foram realizados em formulários reais da Web, de vários domínios, e os resultados indicam que a abordagem proposta apresenta desempenho comparável aos obtidos pelas técnicas do estado da arte, sendo inclusive significativamente diferente com base em avaliação estatística. / A large portion of the information on the Web is stored inside online databases. Such information is accessible only after the users submit a query through a search interface. TheWeb portion in which that information is located is called HiddenWeb or DeepWeb, and generally this part is inaccessible by traditional search engines crawlers. Since the only way to access the Hidden Web pages is through the query submissions, many works have focused on how to fill in form fields automatically, aiming at enhancing the amount of distinct information hidden behind Web forms. This thesis presents an automatic solution to value selection for fields in Web forms. The solution combines heuristics and machine learning techniques for improving the selection of values. Furthermore, this proposal also describes a categorization of form filling techniques and a comparative analysis between works in the state of the art. Experiments were conducted on real Web sites and the results indicated that our approach significantly outperforms a baseline method in terms of coverage without additional computational cost.
7

Preenchimento automático de formulários na web oculta / Automatically filling in hiddenweb forms

Kantorski, Gustavo Zanini January 2014 (has links)
Muitas informações disponíveis na Web estão armazenadas em bancos de dados on-line e são acessíveis somente após um usuário enviar uma consulta por meio de uma interface de busca. Essas informações estão localizadas em uma parte da Web conhecida como Web Oculta ou Web Profunda e, geralmente, são inacessíveis por máquinas de busca tradicionais. Uma vez que a forma de acessar os dados na Web Oculta se dá por intermédio de submissões de consultas, muitos trabalhos têm focado em como preencher automaticamente campos de formulários. Esta tese apresenta uma metodologia para o preenchimento de formulários na Web Oculta. Além disso, descreve uma categorização das técnicas de preenchimento de formulários existentes no estado da arte de coleta na Web Oculta, produzindo uma análise comparativa entre elas. A solução proposta descreve um método automático para seleção de valores para campos de formulários combinando heurísticas e técnicas de aprendizagem de máquina. Experimentos foram realizados em formulários reais da Web, de vários domínios, e os resultados indicam que a abordagem proposta apresenta desempenho comparável aos obtidos pelas técnicas do estado da arte, sendo inclusive significativamente diferente com base em avaliação estatística. / A large portion of the information on the Web is stored inside online databases. Such information is accessible only after the users submit a query through a search interface. TheWeb portion in which that information is located is called HiddenWeb or DeepWeb, and generally this part is inaccessible by traditional search engines crawlers. Since the only way to access the Hidden Web pages is through the query submissions, many works have focused on how to fill in form fields automatically, aiming at enhancing the amount of distinct information hidden behind Web forms. This thesis presents an automatic solution to value selection for fields in Web forms. The solution combines heuristics and machine learning techniques for improving the selection of values. Furthermore, this proposal also describes a categorization of form filling techniques and a comparative analysis between works in the state of the art. Experiments were conducted on real Web sites and the results indicated that our approach significantly outperforms a baseline method in terms of coverage without additional computational cost.
8

Preenchimento automático de formulários na web oculta / Automatically filling in hiddenweb forms

Kantorski, Gustavo Zanini January 2014 (has links)
Muitas informações disponíveis na Web estão armazenadas em bancos de dados on-line e são acessíveis somente após um usuário enviar uma consulta por meio de uma interface de busca. Essas informações estão localizadas em uma parte da Web conhecida como Web Oculta ou Web Profunda e, geralmente, são inacessíveis por máquinas de busca tradicionais. Uma vez que a forma de acessar os dados na Web Oculta se dá por intermédio de submissões de consultas, muitos trabalhos têm focado em como preencher automaticamente campos de formulários. Esta tese apresenta uma metodologia para o preenchimento de formulários na Web Oculta. Além disso, descreve uma categorização das técnicas de preenchimento de formulários existentes no estado da arte de coleta na Web Oculta, produzindo uma análise comparativa entre elas. A solução proposta descreve um método automático para seleção de valores para campos de formulários combinando heurísticas e técnicas de aprendizagem de máquina. Experimentos foram realizados em formulários reais da Web, de vários domínios, e os resultados indicam que a abordagem proposta apresenta desempenho comparável aos obtidos pelas técnicas do estado da arte, sendo inclusive significativamente diferente com base em avaliação estatística. / A large portion of the information on the Web is stored inside online databases. Such information is accessible only after the users submit a query through a search interface. TheWeb portion in which that information is located is called HiddenWeb or DeepWeb, and generally this part is inaccessible by traditional search engines crawlers. Since the only way to access the Hidden Web pages is through the query submissions, many works have focused on how to fill in form fields automatically, aiming at enhancing the amount of distinct information hidden behind Web forms. This thesis presents an automatic solution to value selection for fields in Web forms. The solution combines heuristics and machine learning techniques for improving the selection of values. Furthermore, this proposal also describes a categorization of form filling techniques and a comparative analysis between works in the state of the art. Experiments were conducted on real Web sites and the results indicated that our approach significantly outperforms a baseline method in terms of coverage without additional computational cost.
9

Link Extraction for Crawling Flash on the Web

Antelius, Daniel January 2015 (has links)
The set of web pages not reachable using conventional web search engines is usually called the hidden or deep web. One client-side hurdle for crawling the hidden web is Flash files. This thesis presents a tool for extracting links from Flash files up to version 8 to enable web crawling. The files are both parsed and selectively interpreted to extract links. The purpose of the interpretation is to simulate the normal execution of Flash in the Flash runtime of a web browser. The interpretation is a low level approach that allows the extraction to occur offline and without involving automation of web browsers. A virtual machine is implemented and a set of limitations is chosen to reduce development time and maximize the coverage of interpreted byte code. Out of a test set of about 3500 randomly sampled Flash files the link extractor found links in 34% of the files. The resulting estimated web search engine coverage improvement is almost 10%.
10

Podnikatelské modely na deep webu / Business models on deep web

Soukup, Jan January 2015 (has links)
This diploma thesis analyzes the deep web environment with the use of business models from the surface web. In the indroduction part of the thesis summarize terms web, deep web and dark web, these terms are intermingle the entire thesis, also brings the concept on Onion routing with use of Tor software. An inseparable part is the comparsion of tools which can be used for access to the dark web. The main part of the thesis analyzes most used business models on the surface web including their methods of monetization and after that author tries to apply these models in the dark web environment. An importat part of this work is the analysis a type of services occuring on the dark web and mutual comparison of several sub-criteria of each service. In the final part the thesis presents project Turris on which is applied to create a relay node for the Tor network.

Page generated in 0.0347 seconds