Return to search

Contributions to Delay, Gain, and Offset Estimation

The demand for efficient and reliable high rate communication is ever increasing. In this thesis we study different challenges in such systems, and their possible solutions. A goal for many years has been to implement as much as possible of a radio system in the digital domain, the ultimate goal being so called software defined radio (SDR) where the inner workings of a radio standard can be changed completely by changing the software. One important part of an SDR receiver is the high speed analog-to-digital converter (ADC) and one path to reach this high speed is to use a number of parallel, time-interleaved, ADCs. Such ADCs are, however, sensitive to sampling instant offsets, DC level offsets and gain offsets. This thesis discusses estimators based on fractional-delay filters and one application of these estimmators is to estimate and calibrate the relative delay, gain, and DC level offset between the ADCs comprising the time interleaved ADC. In this thesis we also present a technique for carrier frequency offset (CFO) estimation in orthogonal frequency division multiplexing (OFDM) systems. OFDM has gone from a promising digital radio transmission technique to become a mainstream technique used in several current and future standards. The main attractive property of OFDM is that it is inherently resilient to multipath reflections because of its long symbol time. However, this comes at the cost of a relatively high sensitivity to CFO. The proposed estimator is based on locating the spectral minimas within so-called null or virtual subcarriers embedded in the spectrum.~The spectral minimas are found iteratively over a number of symbols and is therefore mainly useful for frequency offset tracking or in systems where an estimate is not immediately required, such as in TV or radio broadcasting systems. However, complexity-wise the estimator is relatively easy to implement and it does not need any extra redundancy beside a nonmodulated subcarrier. The estimator performance is studied both in a channel with additive white Gaussian noise and in a multipath frequency selective channel environment. Interpolators and decimators are an important part of many systems, e.g. radio systems, audio systems etc. Such interpolation (decimation) is often performed using cascaded interpolators (decimators) to reduce the speed requirements in different parts of the system. In a fixed-point implementation, scaling is needed to maximize the use of the available word lengths and to prevent overflow. In the final part of the thesis, we present a method for scaling of multistage interpolators/decimators using multirate signal processing techniques. We also present a technique to estimate the output roundoff noise caused by the internal quantization.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-11826
Date January 2008
CreatorsOlsson, Mattias
PublisherLinköpings universitet, Elektroniksystem, Linköpings universitet, Tekniska högskolan, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1189

Page generated in 0.0022 seconds