Nous présentons dans ce travail deux exemples de modèles topologiques faisant appel à la cohomologie : - dans le premier exemple nous montrons comment obtenir des invariants topologiques, tels que ceux de Donaldson, de Mumford, de Mathaï-Quillen ou de gravité topologique, en utilisant la cohomologie équivariante. Nous présentons une méthode universelle permettant d'obtenir de tels invariants topologiques en se basant sur une approche de type BRST. Nous rappelons qu'il existe différents " schémas " caractérisant une théorie équivariante et nous montrons comment le schéma de Kalkman permet une construction optimisée des invariants. - dans le second exemple nous étudions les théories abéliennes de Chern-Simons. Nous montrons comment une approche basée sur la cohomologie de Deligne-Beilinson permet de traiter ces théories sur des variétés fermées de dimension trois. Nous montrons comment la structure de ces espaces de cohomologie induit canoniquement la quantification de la constante de couplage et des charges, tout en fournissant les informations nécessaires et suffisantes pour obtenir via l'intégration fonctionnelle les invariants de liens usuellement obtenus à partir de procédures de chirurgie sur la sphère. Cette méthode admet un prolongement naturel qui permet de traiter plus généralement les variétés de dimension 4n+3.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00749523 |
Date | 31 October 2012 |
Creators | Thuillier, Frank |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.002 seconds