Return to search

Spatial Dynamics of Wave Packets in Semiconductor Heterostructures

This thesis presents the first study of the damping of a Bloch oscillating wave packet by Zener tunneling to above-barrier states [1]. We investigate the time evolution of an below-barrier subband Wannier-Stark wave packet in a strongly coupled GaAs/AlGaAs superlattice (SL) with shallow quantum well barriers by optical interband spectroscopy. We use a sub-100 fs homodyne pump-probe technique which is sensitive to the intraband polarization. The presented experimental data unambiguously show an electric field-dependent continuous decrease of the intraband coherence time. Besides the continuous field-induced damping of the intraband polarization, we observe the signature of resonant Zener tunneling of a Bloch oscillating wave packet between discrete states belonging to below and above-barrier bands. This coupling manifests itself as a revival of the intraband polarization [2]. The experiment is modelled in two aspects. First, in a 1D single-particle calculation the wave functions the BO wave packet is composed of are derived. Here, the inter-subband dynamics are found to be given by the energetic splitting between nearly-degenerate below and above-barrier states. The wave packet tunnels from the below-barrier band to the above-barrier band while remaining coherently oscillating. At this time, it is spatially spread over more than 100 nm...

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24525
Date13 May 2005
CreatorsMeinhold, Dirk
ContributorsLeo, Karl, Dignam, Marc, Weiner, Andrew
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds