Return to search

Energy Performance Simulation of Different Ventilation Systems in Sweden and Corresponding Compliance in the LEED Residential Rating System

The importance of energy efficiency in the operation of the built environment is becoming increasingly important. Energy use in the building sector has exceeded both transportation and industry, while within buildings heating, ventilation, and air conditioning has the greatest share. In light of the recent pandemic forcing governments to issue quarantines and stay-at-home orders people are spending even more time indoors, this further emphasizes the importance of proper ventilation and the impacts on energy use. The purpose of this research was to perform a case study of a low environmental impact demonstration house to compare the energy performance of various ventilation strategies. The ventilation strategies varied by overall airflow rate, control strategy, and the presence of heat recovery. Performance was evaluated by establishing a model in IDA ICE, an equation-based modeling tool for the simulation of indoor thermal climate and energy use. The results showed energy savings due to demand-control with a reduction of 12.5%. Results also showed similar savings with a heat recovery system, indicating that any savings in heat loss due to heat recovery is at the expense of increased auxiliary energy. In this particular case, the benefit of upgrading to a heat recovery system from simple demand control set up is not readily apparent. Results also demonstrated trends and possible complications useful to future research plans that aim to measure real world ventilation performance, including how differences in the number and location of sensors impact the efficacy of the demand-controlled systems. A secondary aim was to observe how a newly constructed, low environmental impact home built in Sweden performs according the residential LEED energy budget. The results demonstrated that constructing a house using low impact materials with low embodied energy does not have to negatively impact energy performance, scoring extremely well in the Energy and Atmosphere category of a widely used sustainable building rating system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:du-34516
Date January 2020
CreatorsBoyle, Patrick
PublisherHögskolan Dalarna, Energiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.001 seconds