This thesis presents analysis and characterization of performance of a newly designed, multicolor quantum well infrared photodetector (QWIP). Specifically, it focuses on a detector capable of detecting infrared emissions in the near infrared (NIR), mid-wavelength infrared (MWIR), and long-wavelength infrared (LWIR). Through photocurrent spectroscopy and performance analysis, this prototype detector can be classified and prepared for possible future use within the U.S. Armed Forces. Certain military applications require a highly accurate, reliable, sensitive, and multispectral infrared detector to identify targets and ensure mission success. By designing and fabricating a multicolor quantum well infrared photodetector, simultaneous detection of targets in the near infrared, mid-wavelength infrared and long-wavelength infrared is possible using only one detector. In addition, power and cooling requirements for quantum well infrared detectors makes them suitable for use in the field. / US Navy (USN) author.
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/2842 |
Date | 06 1900 |
Creators | Hanson, Nathan A. |
Contributors | Karunasiri, Gamani, Luscombe, James H., Naval Postgraduate School (U.S.) |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xiv, 51 p. : col ill. ;, application/pdf |
Rights | Approved for public release, distribution unlimited |
Page generated in 0.0017 seconds