Return to search

Algebraic methods for constructing blur-invariant operators and their applications

Abstract
Image acquisition devices are always subject to physical limitations that often manifest as distortions in the appearance of the captured image. The most common types of distortions can be divided into two categories: geometric and radiometric distortions. Examples of the latter ones are: changes in brightness, contrast, or illumination, sensor noise and blur. Since image blur can have many different causes, it is usually not convenient and also computationally expensive to develop ad hoc algorithms to correct each specific type of blur. Instead, it is often possible to extract a blur-invariant representation of the image, and utilize such information to make algorithms that are insensitive to blur.
The work presented here mainly focuses on developing techniques for the extraction and the application of blur-invariant operators. This thesis contains several contributions. First, we propose a generalized framework based on group theory to constructively generate complete blur-invariants. We construct novel operators that are invariant to a large family of blurs occurring in real scenarios: namely, those blurs that can be modeled by a convolution with a point-spread function having rotational symmetry, or combined rotational and axial symmetry.
A second important contribution is represented by the utilization of such operators to develop an algorithm for blur-invariant translational image registration. This algorithm is experimentally demonstrated to be more robust than other state-of-the-art registration techniques. The blur-invariant registration algorithm is then used as pre-processing steps to several restoration methods based on image fusion, like depth-of-field extension, and multi-channel blind deconvolution.
All the described techniques are then re-interpreted as a particular instance of Wiener deconvolution filtering. Thus, the third main contribution is the generalization of the blur-invariants and the registration techniques to color images, by using respectively a representation of color images based on quaternions, and the quaternion Wiener filter. This leads to the development of a blur-and-noise-robust registration algorithm for color images. We observe experimentally a significant increase in performance in both color texture recognition, and in blurred color image registration. / Tiivistelmä
Kuvauslaitteet ovat aina fyysisten olosuhteiden rajoittamia, mikä usein ilmenee tallennetun kuvan ilmiasun vääristyminä. Yleisimmät vääristymätyypit voidaan jakaa kahteen kategoriaan: geometrisiin ja radiometrisiin distortioihin. Jälkimmäisestä esimerkkejä ovat kirkkauden, kontrastin ja valon laadun muutokset sekä sensorin kohina ja kuvan sumeus. Koska kuvan sumeus voi johtua monista tekijöistä, yleensä ei ole tarkoitukseen sopivaa eikä laskennallisesti kannattavaa kehittää ad hoc algoritmeja erityyppisten sumeuksien korjaamiseen. Sitä vastoin on mahdollista erottaa kuvasta sumeuden invariantin edustuma ja käyttää tätä tietoa sumeudelle epäherkkien algoritmien tuottamiseen.
Tässä väitöskirjassa keskitytään esittämään, millaisia eri tekniikoita voidaan käyttää sumeuden invarianttien operaattoreiden muodostamiseen ja sovellusten kehittämiseen. Tämä opinnäyte sisältää useammanlaista tieteellistä vaikuttavuutta. Ensiksi, väitöskirjassa esitellään ryhmäteoriaan perustuva yleinen viitekehys, jolla voidaan generoida sumeuden invariantteja. Konstruoimme uudentyyppisiä operaattoreita, jotka ovat monenlaiselle kuvaustilanteessa ilmenevälle sumeudelle invariantteja. Kyseessä ovat ne rotationaalisesti (ja/tai aksiaalisesti) symmetrisen sumeuden lajit, jotka voidaan mallintaa pistelähteen hajaantumisen funktion (PSF) konvoluutiolla.
Toinen tämän väitöskirjan tärkeä tutkimuksellinen anti on esitettyjen sumeuden invarianttien operaattoreiden hyödyntäminen algoritmin kehittelyssä, joka on käytössä translatorisen kuvan rekisteröinnissä. Tällainen algoritmi on tässä tutkimuksessa osoitettu kokeellisesti johtavia kuvien rekisteröintitekniikoita robustimmaksi. Sumeuden invariantin rekisteröinnin algoritmia on käytetty esiprosessointina tässä tutkimuksessa useissa kuvien restaurointimenetelmissä, jotka perustuvat kuvan fuusioon, kuten syväterävyysaluelaajennus ja monikanavainen dekonvoluutio.
Kaikki kuvatut tekniikat ovat lopulta uudelleen tulkittu erityistapauksena Wienerin dekonvoluution suodattimesta. Näin ollen tutkimuksen kolmas saavutus on sumeuden invarianttien ja rekisteröintiteknikoiden yleistäminen värikuviin käyttämällä värikuvien kvaternion edustumaa sekä Wienerin kvaternion suodatinta. Havaitsemme kokeellisesti merkittävän parannuksen sekä väritekstuurin tunnistuksessa että sumean kuvan rekisteröinnissä.

Identiferoai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-952-62-0877-0
Date09 August 2015
CreatorsPedone, M. (Matteo)
ContributorsHeikkilä, J. (Janne)
PublisherOulun yliopisto
Source SetsUniversity of Oulu
LanguageEnglish
Detected LanguageFinnish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, © University of Oulu, 2015
Relationinfo:eu-repo/semantics/altIdentifier/pissn/0355-3213, info:eu-repo/semantics/altIdentifier/eissn/1796-2226

Page generated in 0.0028 seconds