Return to search

Numerical Optimal Control of Hybrid Electric Trucks : Exhaust Temperature, NOx Emission and Fuel Consumption

The controls for a parallel hybrid electric truck are optimized using numerical optimal control. Trade-offs between catalyst light-off times, NOx emission and fuel consumption have been investigated for cold starts at two operating points, as well as temperature differences between conventional and hybrid powertrains during WHTC (World Harmonized Transient Cycle). A model describing the temperature dynamics of the aftertreatment system is implemented as well as temperature-based deNOx performance for both Cu-Zeolite and Fe-Zeolite catalysts. Control is performed in a piecewise linear fashion, resulting in a total of 23 states including control signals. It is shown that high temperatures can be a larger threat to catalyst performance when running the WHTC than low temperatures, for both conventional and hybrid powertrains. Furthermore, decreasing the light-off time of the catalyst does not always lead to decreased NOx emission, instead there is a trade-off between light-off time and NOx emission. It is found that there are controls that will realize decreased NOx emission for a hybrid truck during cold starts at the expense of increased fuel consumption.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-148680
Date January 2018
CreatorsAndersson, Fredrik, Andersson, Hampus
PublisherLinköpings universitet, Fordonssystem, Linköpings universitet, Fordonssystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0143 seconds