Return to search

Problèmes de contrôle stochastiques : contrôle sous contrainte, contrôlabilité et application à la réassurance

Le but de cette thèse est de présenter quelques contributions dans le cadre du contrôle des équations différentielles stochastiques en dimension finie où infinie :<br />(1) Contrôle stochastique non borné sous contraintes d'état.<br />Nous étudions une condition nécessaire sous laquelle les solutions d'une EDS régie par un processus de contrôle non-borné restent dans un voisinage arbitrairement petit d'un ensemble donné de contraintes.<br />(2) Contrôlabilité approchée pour des équations différentielles linéaires avec bruit contrôlé.<br />Dans cette deuxième partie, on s'intéresse à la propriété de contrôlabilité approchée pour une EDS linéaire. Nous proposons une généralisation de la condition de Kalman pour le cas général où le contrôle agit sur le bruit.<br />(3) Contrôlabilité approchée pour des équations différentielles linéaires en dimension infinie.<br />La troisième partie est dédiée à l'étude de la propriété de contrôlabilité approchée pour un système stochastique linéaire dans un espace de Hilbert réel et séparable. En particulier, nous montrons l'existence et unicité pour la solution de l'EDSR duale lorsque les opérateurs qui agissent sur Y et Z sont non-bornés. Dans le cas d'un générateur infinitésimal d'un semi-groupe exponentiellement stable, nous montrons que le test généralisé de Hautus donne une condition nécessaire pour la contrôlabilité approchée.<br />(4) Assurance, réassurance et paiement de dividendes.<br />Nous introduisons un modèle d'assurance qui permet la réassurance et le paiement des dividendes. Notre modèle prend en compte plusieurs contrats homogènes ainsi que la législation européenne en vigueur concernant les provisions des sociétés d'assurance.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00258044
Date17 December 2007
CreatorsGoreac, Dan
PublisherUniversité de Bretagne occidentale - Brest
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds