Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Estudamos folheaÃÃes de formas espaciais por hipersuperfÃcies completas, sob certas condiÃÃes sobre as suas curvaturas mÃdias de ordem superior. Em particular, no espaÃo euclidiano obtemos um Teorema tipo-Bernstein para grÃficos cujas curvaturas mÃdia e escalar nÃo mudam de sinal (podendo ser
nÃo constantes). NÃs tambÃm estabelecemos a nÃo existÃncia de folheaÃÃes da esfera padrÃo cujas folhas sÃo completas e tÃm curvatura escalar constante,
alargando assim um teorema de Barbosa, Kenmotsu e Oshikiri. Para o caso mais geral de folheaÃÃes r-mÃnimas do espaÃo euclidiano, possivelmente com um conjunto singular, somos capazes de invocar um teorema de D. Ferus para dar condiÃÃes sob as quais as folhas nÃo-singulares sÃo folheadas por hiperplanos. / We study foliations of space forms by complete hypersurfaces, under some mild conditions on its higher order mean curvatures. In particular, in Euclidean
space we obtain a Bernstein-type theorem for graphs whose mean and scalar curvature do not change sign but may otherwise be nonconstant. We also establish the nonexistence of foliations of the standard sphere whose leaves are complete and have constant scalar curvature, thus extending a theorem of Barbosa, Kenmotsu and Oshikiri. For the more general case of r-minimal foliations
of the Euclidean space, possibly with a singular set, we are able to invoke a theorem of Ferus to give conditions under which the nonsigular leaves are foliated by hyperplanes.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:4017 |
Date | 29 April 2010 |
Creators | Francisco Calvi da Cruz Junior |
Contributors | Antonio Caminha Muniz Neto, Henrique Fernandes de Lima, Jorge Herbert Soares de Lira |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0083 seconds