Orientador: Juliana Conceição Precioso Pereira / Coorientador: Andrea Cristina Prokopczyk Arita / Banca: Michelle Fernanda Pierri Hernandez / Banca: Waldemar Donizete Bastos / Resumo: SejamAum operador fechado e densamente definido em um espa¸co de BanachX ef∈L 1 ([0,τ];X). O objetivo deste trabalho e apresentar uma condição necessária e suficiente para a existência de solução weak, dada por J. Ball, do problema { d dt u(t) = Au(t) +f(t), t > 0 u(0) = x. Neste caso, a solução weak coincide com a solução mild (dada pela Fórmula da Variação das Constantes). Como aplicação, estudaremos um problema de valor inicial e de fronteira para equações parabólicas de segunda ordem e concluiremos que sua solução fraca, no sentido usual de EDP's, coincide com a solução mild do problema de Cauchy abstrato associado / Abstract: LetAbe a closed linear operator densely defined on a Banach spaceXand f∈L 1 ([0,τ];X). The purpose of this work is to present a necessary and sufficient condition to the existence of weak solution, introduced by J. Ball, for the problem { d dt u(t) = Au(t) +f(t), t > 0 u(0) = x. In this case, the weak solution coincides with the mild solution (given by the Variation of the Constants Formula) As an application we study an initial boundary value problem for a second order parabolic and conclude that its weak solution, coincides with the mild solution of the associated Abstract Cauchy Problem / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000714142 |
Date | January 2013 |
Creators | Amaral, Jhony Sá do. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 67 f. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0022 seconds