Return to search

Estudo da forma??o dos complexos coacervados obtidos a partir de prote?nas globulares / Study of formation of complex coacervates obtained from globular proteins.

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-10-17T10:53:24Z
No. of bitstreams: 1
2016 - Monique Barreto Santos.pdf: 2356049 bytes, checksum: 8a379b47682a5e067746503ee59b6d27 (MD5) / Made available in DSpace on 2016-10-17T10:53:24Z (GMT). No. of bitstreams: 1
2016 - Monique Barreto Santos.pdf: 2356049 bytes, checksum: 8a379b47682a5e067746503ee59b6d27 (MD5)
Previous issue date: 2016-02-29 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / Proteins are biopolymers of high nutritional and functional significance has been widely used as food ingredients. The interaction between two different proteins oppositely charged, and can give rise to complex coacervate currently used as an ingredient in food technology or as a microencapsulating agent. The formation of complex coacervates between Lysozyme and Ovalbumin and between Bovine serum albumin (BSA) and Lysozyme has been investigated as a function of pH, mass ratio of total and concentration of NaCl. For both interactions studied, complexing latched in a wide pH range which corresponds to the interval between the pI of proteins. Among Ovalbumin and Lysozyme interaction was more intense in the ratio r = 1 at pH 7.5 and BSA and Lysozyme most complex formation has occurred on the ratio r = 0.5 and pH 9.0. Changes in the ionic strength by adding NaCl negatively affected the interaction between Lysozyme and BSA already at a concentration of 0.01 mol / L and 0.03 mol / L abolished the interaction between Lysozyme and Ovalbumin. Through Potential - zeta can be seen that the formation of insoluble complexes was highest near the pI for all studied reasons, indicating that the interaction is given by neutralization of opposite charges. The Infrared spectra suggested that electrostatic interactions led interactions however, hydrogen bonds also had a hand in the coacervation process for the proteins under study. The micrographs showed that the insoluble complexes showed spherical structure and particle size showed the formation of structures with an average size around 2 ?m, much larger than the observable size for the isolated proteins. The isothermal titration calorimetry showed that the interaction between Lysozyme and Ovalbumin was exothermic and was performed in two steps, the first and second entropy directed enthalpy driven. The differential scanning calorimetry suggested the presence of a single point of denaturation, that the interaction between Lysozyme and BSA led to a new biopolymer with denaturation temperature 67 ? C differs from isolated proteins. These studies suggested that complex coacervates formed between Ovalbumin / Lysozyme and BSA / Lysozyme could be used as the encapsulating bioactive agent or as food ingredients in order to add nutritional value. / Prote?nas s?o biopol?meros de grande import?ncia nutricional e funcional tendo sido amplamente utilizadas como ingredientes alimentares. A intera??o entre duas prote?nas diferentes e opostamente carregadas pode dar origem aos complexo coacervado, atualmente utilizados como ingrediente na tecnologia de alimentos ou como agente de microencapsula??o. A forma??o de complexos coacervados entre Ovalbumina e Lisozima e entre Albumina s?rica bovina (BSA) e Lisozima foi investigada em fun??o do pH, raz?o de massa total e concentra??o de NaCl. Para as duas intera??es estudadas, a complexa??o acorreu em uma ampla faixa de pH, que corresponde ao intervalo entre os pI das prote?nas. Entre Ovalbumina e Lisozima a intera??o foi mais intensa na raz?o r=1 em pH 7,5 e para BSA e Lisozima a maior forma??o de complexos ocorreu na raz?o r=0,5 e pH 9,0. Altera??es na for?a i?nica por adi??o de NaCl influenciaram negativamente a intera??o entre Albumina BSA e Lisozima j? na concentra??o de 0,01 mol/L e a 0,03 mol/L suprimiu a intera??o entre Ovalbumina e Lisozima. Por meio do Potencial - zeta pode-se verificar que a forma??o de complexos insol?veis foi m?xima pr?ximo ao pI para todas as raz?es estudadas, indicando que a intera??o se deu por neutraliza??o de cargas opostas. Os espectros no infravermelho sugeriram que intera??es eletrost?ticas conduziram as intera??es no entanto, liga??es de hidrog?nio tamb?m tiveram participa??o no processo de coacerva??o para as prote?nas em estudo. As micrografias revelaram que os complexos insol?veis apresentavam estrutura esf?rica e o tamanho de part?cula demonstrou a forma??o de estruturas com tamanho m?dio em torno de 2 ?m, as quais s?o bem maiores do que o tamanho obervado para as prote?nas isoladas. A calorimetria de titula??o isot?rmica demonstrou que a intera??o entre Ovalbumina e Lisozima foi exot?rmica, a qual ocorreu em duas etapas, a primeira entropicamente dirigida e a segunda entalpicamente dirigida. A calorimetria diferencial de varredura sugeriu, pela presen?a de um ?nico ponto de desnatura??o, que a intera??o entre BSA e Lisozima deu origem a um novo biopol?mero com temperatura de desnatura??o a 67?C, diferente das prote?nas isoladas. Estes estudos sugeriram que complexos coacervados formados entre Ovalbumina / Lisozima e BSA / Lisozima poderiam ser utilizados como agente encapsulante de bioativos ou como ingredientes alimentares com o objetivo de agregar valor nutricional.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1297
Date29 February 2016
CreatorsSantos, Monique Barreto
ContributorsRojas, Edwin Elard Garcia, Souza, Clitor Junior Fernandes de, Carvalho, Carlos Wanderlei Piler
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos, UFRRJ, Brasil, Instituto de Tecnologia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
Relation5. REFER?NCIAS ANEMA, S. G.; KRUIF, C. G. Coacervates of lysozyme and ?-casein. Journal of Colloid and Interface Science, v. 398, p. 255?261, 2013. ANEMA, S. G.; KRUIF, C. G. K. DE. Complex coacervates of lactotransferrin and ?-lactoglobulin. Journal of Colloid and Interface Science, v.430, p.214?220, 2014. ANTONOV, Y. A.; ZHURAVLEVA, I. L.; CARDINAELS, R.; MOLDENAERS, P.. Structural studies on the interaction of lysozyme with dextran sulfate. Food Hydrocolloids, v. 44, p.71-80, 2015. ARZEN?EK, D; PODGORNIK, R; KUZMAN, D. Dynamic light scattering and application to proteins in solutions. University Ljubljana, Faculty of mathematics and physics, p.1-19, 2010 C 81 BARTH, A. & ZSCHERP, C. What vibrations tell us about proteins. Q. Rev. Biophys., v. 35, n. 4, p. 369?430, 2002. BYE, J. W.; FALCONER, R. J. Thermal stability of lysozyme as a function of ion concentration: A reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci, v. 22, n. 11, p. 1563?1570, 2013. CHAI, C.; LEE, J.; HUANG, Q. The effect of ionic strength on the rheology of pH-induced bovine serum albumin/?-carrageenan coacervates. LWT - Food Science and Technology, v. 59, n. 1, p. 356?360, 2014. DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Qu?mica de Alimentos de Fennema. 4. ed., Artmed, Porto Alegre, p. 900. 2010. DESFOUG?RES, Y.; CROGUENNEC, T.; LECHEVALIER, V.; BOUHALLAB, S.; NAU, F. Charge and Size Drive Spontaneous Self-Assembly of Oppositely Charged Globular Proteins into Microspheres. The Journal of Physical Chemistry B, v. 114, n. 12, p. 4138?4144, 2010. DE VRIES, R.; COHEN STUART, M. Theory and simulations of macroion complexation. Current Opinion in Colloid & Interface Science, v. 11, n. 5, p. 295-301, 2006. DIARRASSOUBA, F. G. R. et al. Self-assembly of ?-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, v. 173, p. 203?209, 2015. DONG, A., HUANG, P., CAUGHEY, W. S. Protein secondary structures in water from second derivative amide I infrared spectra. Biochemistry, v.29, p.3303-3308, 1990. FAO-DATABASE. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. 2015. Acesso em: 01 Fevereiro GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Interbiopolymer complexing between ?-lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, v. 16, p. 585 - 591, 2002. GUL?O, E. D. S.; DE SOUZA, C. J. F.; DA SILVA, F. A. S.; COIMBRA, J. S. R.; GARCIA-ROJA, E. E. Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, n. 0, 2014. GUL?O, E. DA S.; SOUZA, C. J. F. DE; ANDRADE, C. T.; GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization. Food Chem, v. 194, p. 680?686, 2016. HIROSHI, M.A.; KIKUCHI, R.; OGAWA, K.; KOKUFUTA, E. Light scattering study of complex formation between protein and polyelectrolyte at various ionic strengths. Colloids and Surfaces B: Biointerfaces, v.56, p. 142?148, 2007. HOWELL, N. K., YEBOAH, N. A., & LEWIS, D. F. V. Studies on the electrostatic interactions of lysozyme with a-lactalbumin and b-lactoglobulin. International Journal of Food Science and Technology, v. 30, p. 813?824, 1995. 82 HUANG, C.Y.; BALAKRISHNAN, G.; SPIRO, T. G. Protein secondary structure from deep-UV resonance Raman spectroscopy. Journal of Raman Spectroscopy, v. 37, n. 1-3, p. 277-282, 2006. HUANG, G.Q.; SUN, Y.T.; XIAO, J.X.; YANG, J. Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, v. 135, n. 2, p. 534?539, 2012. IUPAC, Compendium of Chemical Terminology. second ed., Blackwell Scientific Publications, Oxford, 1997. JONES, O. G.; MCCLEMENTS, D. J. Functional Biopolymer Particles: Design, Fabrication, and Applications. Comprehensive Reviews in Food Science and Food Safety, v. 9, p. 374 - 397, 2010. KHURSHID, S.; SARIDAKIS, E.; GOVADA, L.; CHAYEN, N. E. Porous nucleating agents for protein crystallization. Nat Protoc, v. 9, n. 7, p. 1621?1633, 2014. KLASSEN, D. R.; ELMER, C. M.; NICKERSON, M. T. Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides. Food Chemistry, v. 126, n. 3, p. 1094-1101, 2011. KRUIF, C. G.; TUINIER, R. Polysaccharide protein interactions. Food Hydrocolloids, v.15, p.555-563, 2001. KOVACS-NOLAN, J.; PHILLIPS, M.; MINE, Y. Advances in the Value of Eggs and Egg Components for Human Health. Journal of Agricultural and Food Chemistry, v. 53, n. 22, p. 8421-8431, 2005. LI, X.; FANG, Y.; AL-ASSAF, S.; PHILLIPS, G. O.; YAO, X.; ZHANG, Y.; ZHAO, M.; ZHANG, K.; JIANG, F. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram. Langmuir, v. 28, n. 27, p. 10164?10176, 2012. LIU, J.; SHIM, Y. Y.; WANG, Y.; REANEY, M. J. T. Intermolecular interaction and complex coacervation between bovine serum albumin and gum from whole flaxseed (Linum usitatissimum L.). Food Hydrocolloids, v. 49, p. 95?103, 2015. MICHNIK, A. Thermal stability of bovine serum albumin DSC study. Journal of Thermal Analysis and Calorimetry, v. 71, n. 2, p. 509?519, 2003. ORD??EZ, J. A.; RODRIGUEZ, M. I. C.; ?LVAREZ, L. F.; SANZ, M. L. G.; MINGUILL?N, G. D. G. F.; PERALES, L. H.; CORTECERCO, M. D. S. Tecnologia de Alimentos: alimentos de origem animal. Porto Alegre: Artmed, v. 2, p. 269-294, 2005. PARMAR, A. S.; MUSCHOL, M. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic vs. kosmotropic ions. Biophysical Journal, v. 97, p. 590-598, 2009. 83 PELEGRINE, D. H. G. e CARRASQUEIRA, R. L. Aproveitamento do soro do leite no enriquecimento nutricional de bebidas. Braz. J. Food Technol., VII BMCFB, P.145-151, 2008. QIN, B. Y., BEWLEY, M. C., CREAMER, L. K., BAKER, H. M., BAKER, E. N., & JAMESON, G. B. Structural basis of the Tanford transition of bovine b-lactoglobulin. Biochemistry, v.37, p.14014?14023, 1998. SEYREK, E.; DUBIN, P. L.; TRIBET, C.; GAMBLE, E. A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules, v. 4, n. 2, p. 273-282, 2003. SGARBIERI, V. C. Prote?nas em alimentos proteicos.S?o Paulo: Varela, p. 57-172, 1996. SOUZA, C. J. F.; GARCIA-ROJAS, E. E. Effects of salt and protein concentrations on the association and dissociation of ovalbumin-pectin complexes. Food Hydrocolloids , v. 47, n. 5, p. 124-129, 5. 2015 SCHMITT, C.; PALMA DA SILVA, T.; RAMI-SHOJAEI, C. B. S.; FROSSARD, P.; KOLODZIEJCZYK, E.; LESER, M. E. Effect of time on the interfacial and foaming properties of ?-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Langmuir, v.21, p.7786-7795, 2005. SCHMITT, C.; SANCHEZ, C.; DESOBRY-BANON, S.; HARDY, J. Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review. Critical Reviews in Food Science and Nutrition, v. 38, n. 8, p. 689-753, 1998 SCHMIDT, V. ; GIACOMELLI, C.; SOLDI, V.Thermal stability of films formed by soy protein isolate?sodium dodecyl sulfate. Polymer Degradation and Stability, v.87, p. 25?31, 2005 SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science, v. 167, n. 1?2, p. 63-70, 2011. SOUZA, C. J.F.; ROJAS, E. E. G.; MELO, N. R. G., LINS, J.F.C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, p. 375-381, 2013. STADELMAN, W. J.; COTTERILL, O. J. Egg Science and Technology. Food Products Press, 1995. STUART, B. H. Infrared Spectroscopy of Biological Applications: An Overview. In: (Ed.). Encyclopedia of Analytical Chemistry: John Wiley & Sons, Ltd, 2006. TOLSTOGUZOV, V.B. Functional properties of food proteins and role of protein polysaccharide interaction. Food Hydrocolloid, v.4, p. 429-468, 1991. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v.12. p.166?178. 2007. 84 TURGEON, S. L., BEAULIEU, M., SCHMITT, C., & SANCHEZ, C. Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, p. 401-414, 2003. TURGEON, S. L.; LANEUVILLE, S.I. CHAPTER 11 - Protein + Polysaccharide Coacervates And Complexes: From Scientific Background To Their Application As Functional Ingredients In Food Products. In: STEFAN, K.;IAN, T. N.;JOHAN B. UBBINKA2 - STEFAN KASAPIS, I. T. N. e JOHAN, B. U. (Ed.). Modern Biopolymer Science. San Diego: Academic Press, 2009. p.225-260. VINAYAHAN, T.; WILLIAMS, P. A.; PHILLIPS, G. O. Electrostatic interaction and complex formation between gum arabic and bovine serum albumin. Biomacromolecules, v. 11, n. 12, p. 3367?3374, 2010. WATER, J. J.; SCHACK, M. M. ; VELAZQUEZ-CAMPOY, A.; MALTESEN, M. J.; VAN DE WEERT, M.; JORGENSEN, L. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability. Eur J Pharm Biopharm, v. 88, n. 2, p. 325?331, 2014. WEINBRECK, F.; NIEUWENHUIJSE, H.; ROBIJN, G. W.; DE KRUIF, C. G. Complex Formation of Whey Proteins: Exocellular Polysaccharide EPS B40. Langmuir, v. 19, p. 9404-9410, 2003. YANG, Y.; ANVARI, M.; PAN, C.H.; CHUNG. D. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions. Food Chemistry, v.135 p. 555?561, 2012. YE, A.; FLANAGAN, J.; SINGH, H. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic. Biopolymers, v. 82, n. 2, p. 121-133, 2006. YOSHIDA, K;. SOKHAKIAN, S; DUBIN, P.L. Binding of Polycarboxylic Acids to Cationic Mixed Micelles: Effect of Polymer Counterion Binding and Polyion Charge Distribution. Jornal of Colloid and Interface Science, v. 205, p. 257-264, 1998 YUAN, Y.; WAN, Z.-L.; YANG, X.-Q. ; YIN, S.-W. Associative interactions between chitosan and soy protein fractions: Effects of pH, mixing ratio, heat treatment and ionic strength. Food Research International, v. 55, p. 207?214, 2014. ZHANG, L. Y.; ZHANG, X. H.; ABBAS, S.; KARANGWA, E. The study of Ph dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, p. 323-332, 2013. ZHAO, Y.; LI, F.; CARVAJAL, M.T.; HARRIS, M.T. Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier. Journal of Colloid and Interface Science, v. 332 , p. 345?353, 2009.

Page generated in 0.0032 seconds