This thesis is concerned with the solution of control and state constrained optimal control problems, which are governed by elliptic partial differential equations. Problems of this type are challenging since they suffer from the low regularity of the multiplier corresponding to the state constraint. Applying an augmented Lagrangian method we overcome these difficulties by working with multiplier approximations in $L^2(\Omega)$. For each problem class, we introduce the solution algorithm, carry out a thoroughly convergence analysis and illustrate our theoretical findings with numerical examples.
The thesis is divided into two parts. The first part focuses on classical PDE constrained optimal control problems. We start by studying linear-quadratic objective functionals, which include the standard tracking type term and an additional regularization term as well as the case, where the regularization term is replaced by an $L^1(\Omega)$-norm term, which makes the problem ill-posed. We deepen our study of the augmented Lagrangian algorithm by examining the more complicated class of optimal control problems that are governed by a semilinear partial differential equation.
The second part investigates the broader class of multi-player control problems. While the examination of jointly convex generalized Nash equilibrium problems (GNEP) is a simple extension of the linear elliptic optimal control case, the complexity is increased significantly for pure GNEPs. The existence of solutions of jointly convex GNEPs is well-studied. However, solution algorithms may suffer from non-uniqueness of solutions. Therefore, the last part of this thesis is devoted to the analysis of the uniqueness of normalized equilibria. / Die vorliegende Arbeit beschäftigt sich mit der Lösung von kontroll- und zustandsbeschränkten Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingungen. Da die zur Zustandsbeschränkung zugehörigen Multiplikatoren nur eine niedrige Regularität aufweisen, sind Probleme dieses Typs besonders anspruchsvoll. Zur Lösung dieser Problemklasse wird ein augmentiertes Lagrange-Verfahren angewandt, das Annäherungen der Multiplikatoren in $L^2(\Omega)$ verwendet. Für jede Problemklasse erfolgt eine Präsentation des Lösungsalgorithmus, eine sorgfältige Konvergenzanalysis sowie eine Veranschaulichung der theoretischen Ergebnisse durch numerische Beispiele.
Die Arbeit ist in zwei verschiedene Themenbereiche gegliedert. Der erste Teil widmet sich klassischen Optimalsteuerungsproblemen. Dabei wird zuerst der linear-quadratische und somit konvexe Fall untersucht. Hier setzt sich das Kostenfunktional aus einem Tracking-Type Term sowie einem $L^2(\Omega)$-Regularisierungsterm oder einem $L^1(\Omega)$-Term zusammen. Wir erweitern unsere Analysis auf nichtkonvexe Probleme. In diesem Fall erschwert die Nichtlinearität der zugrundeliegenden partiellen Differentialgleichung die Konvergenzanalysis des zugehörigen Optimalsteuerungsproblems maßgeblich.
Der zweite Teil der Arbeit nutzt die Grundlagen, die im ersten Teil erarbeitet wurden und untersucht die allgemeiner gehaltene Problemklasse der Nash-Mehrspielerprobleme. Während die Untersuchung von konvexen verallgemeinerten Nash-Gleichsgewichtsproblemen (engl.: Generalized Nash Equilibrium Problem, kurz: GNEP) mit einer für alle Spieler identischen Restriktion eine einfache Erweiterung von linear elliptischen Optimalsteuerungsproblemen darstellt, erhöht sich der Schwierigkeitsgrad für Mehrspielerprobleme ohne gemeinsame Restriktion drastisch. Die Eindeutigkeit von normalisierten Nash-Gleichgewichten ist, im Gegensatz zu deren Existenz, nicht ausreichend erforscht, was insbesondere eine Schwierigkeit für Lösungsalgorithmen darstellt. Aus diesem Grund wird im letzten Teil dieser Arbeit die Eindeutigkeit von Lösungen gesondert betrachtet.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:21384 |
Date | January 2020 |
Creators | Karl, Veronika |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds