Return to search

Evaluation of a novel method to investigate diffusion between copper-zinc alloys and cemented carbides

When slow wear mechanisms are studied it is important to examine slower processes, such as diffusion. Such processes can have a significant impact over time and can cause other phases to form, which can have a large effect on the wear. This thesis has investigated the diffusion that is believed to take place between brass and cemented carbide tools. This was done to further the understanding of the slow atomic wear which if properly understood, could lead to solutions that would increase the lifetime of the tools. The diffusion pairs were made from a tribological contact and then heat treated to speed up the diffusion process. Different temperatures and times were tested, from 400 °C for 3 h to 700 °C for 24 h. The samples were analysed with SEM and EDS both before and after the heat treatment, to see if diffusion had taken place. However, because of many unexpected processes and reactions the analysis could not confirm that diffusion had taken place. The transportation of Cu at the higher temperatures was much faster than expected, and in some samples, Cu could not be detected after the heating. Since the surface was so mobile, the slower diffusion process did not have time to take place. Many improvements for future experiments are suggested to be able to observe the diffusion, such as depositing a thin film or adding more work material.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-482001
Date January 2022
CreatorsLarsson, André
PublisherUppsala universitet, Tillämpad materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 22028

Page generated in 0.0033 seconds