Return to search

Structural Brain Abnormalities in Temporomandibular Disorders

Temporomandibular disorders (TMD) are a family of prevalent chronic pain disorders affecting masticatory muscles and/or the temporomandibular joint. There is no unequivocally recognized peripheral aetiology for idiopathic TMD. The central nervous system (CNS) may initiate and/or maintain the pain in idiopathic TMD due to sustained or long-term nociceptive input that induces maladaptive brain plasticity, and/or to inherent personality-related factors that may reduce the brain's capacity to modulate nociceptive activity. The main aim of this thesis is to determine whether there are structural neural abnormalities in patients with TMD, and whether these abnormalities are related to TMD pain characteristics, or to neuroticism. The specific aims are to delineate in TMD: (1) gray matter (GM) brain abnormalities and the contribution of pain and neuroticism to abnormalities; (2) the contribution of abnormal brain GM aging in focal cortical regions associated with nociceptive processes; and (3) abnormalities in brain white matter and trigeminal nerve and the contribution of pain. In groups of 17 female patients with TMD and 17 age- and sex- matched controls, magnetic resonance imaging revealed that patients with TMD had: (1) thicker cortex in the somatosensory, ventrolateral prefrontal and frontal polar cortices than controls, (2) cortical thickness in motor and cognitive areas that was negatively related to pain intensity, orbitofrontal cortical thickness that was negatively correlated to pain unpleasantness, and thalamic GM volume correlated to TMD duration, (3) an abnormal relationship between neuroticism and orbitofrontal cortical thickness, (4) abnormal GM aging in nociceptive, modulatory and motor areas, (5) widespread abnormalities in white matter tracts in the brain related to sensory, motor and cognitive functions, (6) reduced trigeminal nerve integrity related to pain duration, and (7) abnormal connectivity in cognitive and modulatory brain regions. In sum, this thesis demonstrates for the first time abnormalities in both peripheral nerve and CNS in patients with TMD.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/34816
Date18 December 2012
CreatorsMoayedi, Massieh
ContributorsDavis, Karen
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds