Return to search

Wavelets on Lie groups and homogeneous spaces

Within the past decades, wavelets and associated wavelet transforms have been intensively investigated in both applied and pure mathematics. They and the related multi-scale analysis provide essential tools to describe, analyse and modify signals, images or, in rather abstract concepts, functions, function spaces and associated operators. We introduce the concept of diffusive wavelets where the dilation operator is provided by an evolution like process that comes from an approximate identity. The translation operator is naturally defined by a regular representation of the Lie group where we want to construct wavelets. For compact Lie groups the theory can be formulated in a very elegant way and also for homogeneous spaces of those groups we formulate the theory in the theory of non-commutative harmonic analysis. Explicit realisation are given for the Rotation group SO(3), the k-Torus, the Spin group and the n-sphere as homogeneous space. As non compact example we discuss diffusive wavelets on the Heisenberg group, where the construction succeeds thanks to existence of the Plancherel measure for this group. The last chapter is devoted to the Radon transform on SO(3), where the application on diffusive wavelets can be used for its inversion. The discussion of a variational spline approach provides criteria for the choice of points for measurements in concrete applications.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:105-qucosa-78988
Date08 December 2011
CreatorsEbert, Svend
ContributorsTU Bergakademie Freiberg, Mathematik und Informatik, PD Dr. rer. nat. habil. Swanhild Bernstein, PD Dr. rer. nat. habil. Swanhild Bernstein, Prof. Franciscus Sommen
PublisherTechnische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola"
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0023 seconds