Nous etudions la perte de masse par formation de poussiere dans certains processus de fragmentation. Nous caracterisons en fonction du taux de fragmentation l'existence de poussiere et decrivons les comportements asymptotiques de sa masse. Puis, lorsque la fragmentation est auto-similaire d'indice negatif, nous analysons la regularite de la formation de poussiere et decrivons la genealogie de la fragmentation a l'aide d'un arbre continu aleatoire au sens d'Aldous. Nous calculons alors la dimension de Hausdorff de cet arbre, ainsi que le coefficient de Holder maximal de sa fonction de hauteur. Nous nous interessons ensuite a des processus de fragmentation avec une immigration Poissonnienne. Nous etudions en particulier l'existence et la nature d'un etat d'equilibre pour de tels systemes. Des etudes analogues sont entreprises pour des modeles deterministes de fragmentation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007465 |
Date | 25 October 2004 |
Creators | HAAS, Benedicte |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds