Neste trabalho, mostraremos que o algoritmo que determina digito a digito a raiz quadrada de um número real positivo, corresponde a um sistema dinâmico no plano com um comportamento dinâmico complexo. Uma relação de equivalência pode ser obtida e através dela determinamos um novo sistema dinâmico definido no espaço quociente. Tal sistema dinâmico será estudado a partir de dois pontos de vista: Dinâmica Topológica e Teoria Ergódiga. Mostraremos que tal sistema dinâmico é topologicamente conjugado ao shift map no espaço de Bernoulli sobre 10 símbolos. Além disso, mostraremos que existe uma medida invariante natural a qual ergódiga para este sistema dinâmico. / In this work, we will show that the algorithm, which determines digit by digit the square root of a positive real number, corresponds to a dynamical system in the plane with complex dynamical behaviour. A relation of equivalence can be obtained and through it we determine a new dynamical system in the quotient space. Such dynamical system will be study from two points of view: Topological Dynamics and Ergodic Theory. We will show that such dynamical system is topologically conjugated to a shift map in the Bernoulli’s space on 10 symbols. Furthermore we will show that there exists a natural invariant measure which is ergodic for this dynamical system.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/80715 |
Date | January 2002 |
Creators | Sobottka, Marcelo |
Contributors | Lopes, Artur Oscar |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds