Ce mémoire porte sur la modélisation et l'analyse de réseaux de Petri de type Graphes d' Événements (GE) temporises et temporels, au moyen d'outils algébriques utilisée dans l'algèbre conventionnelle. La modélisation mathématique de ces systèmes dynamiques a événements discrets (SDED) conduit a une écriture polyédrale de la forme A:x b, o u x est un vecteur de dates. Nous donnons une technique algébrique permettant d'exprimer les trajectoires au plus tôt et réalisons une synthèse de la commande sous le critère classique de juste- a-temps d'un GE temporise. On utilise les concepts d'ordre composante par composante, de demi-treillis et d'inégalités monotones. Nous analysons la performance d'un graphe d'événements p-temporels, cette analyse se réduit a un problème de la programmation linéaire dont l'objectif est de calculer la valeur maximale et minimale du temps de cycle d'un graphe d'événements P-temporels. Dans une autre partie, nous constituons un modèle entrées/sorties dont le fonctionnement est proche de celui de l'équation d'état de l'automatique classique. Ensuite, en appliquant une formulation de la programmation linéaire, on calcule la trajectoire au plus tôt et au plus tard en utilisant une fonction objectif. Enfin, nous considérons le problème de la poursuite de trajectoire sur un horizon glissant.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00730500 |
Date | 24 September 2010 |
Creators | Guezzi, Abdelhak |
Publisher | Université d'Angers |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds