CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Ao longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares. / Over the past decades, the transmission of mathematical knowledge in basic education has undergone several changes. The âTeaching Traditionalâ math was based on memorizing formulas, so there mechanization in problem solving where the student was seen as a liability to be process. The new vision of education that seeks to signify exposed to room content, motivated the choice of this theme, as diophantine equations involving situations problems can be easily noticed in our daily lives. The objective of this work is an opportunity for a realization of an advisory reading for the teacher of basic education, and assert that these equations can be applied in basic education as a tool that encourages the logical thinking, reasoning, understanding and mathematical interpretation. The formulation of this material which is divided into five chapters was through literature review through descriptive research. The introduction comprises the first chapter. The second chapter deals with the Legacy of Diophantus: life and works, emphasizing his work entitled âArithmeticaâ which contributed significantly to the development of number theory. The third chapter deals with linear Diophantine equations in n variables. The fourth chapter discusses the Pythagorean tender, Fermatâs of secants and Tangents method, in finding rational solutions to equations with rational coefficients, of the form ax2 + by2 = c and a particular case Fermatâs Last Theorem. The fifth chapter is composed of problems on linear diophantine equations.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:8503 |
Date | 26 April 2014 |
Creators | NatÃlia Medeiros do Nascimento |
Contributors | Josà Alberto Duarte Maia, Francisco Regis Vieira Alves, Marcelo Ferreira de Melo |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT), UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds