Made available in DSpace on 2015-04-11T14:03:16Z (GMT). No. of bitstreams: 1
DISSERTACAO MARCIA.pdf: 794477 bytes, checksum: 2cef05b5eceb08ee3829eec46ac4a278 (MD5)
Previous issue date: 2009-04-24 / Fundação de Amparo à Pesquisa do Estado do Amazonas / Textual and structural sources of evidences extracted from web pages are frequently used to improve the results of Information Retrieval (IR) systems. The main topic of a web page is a textual source of evidence that has a wide applicability in IR systems. It
can be used as a new source of evidence to improve ranking results, page classification, filtering, among other applications.
In this work, we propose to study, develop and evaluate a method to identify the main topic of a web page using a combination of different sources of evidences. We define the main topic of a web page as a set of, at most, five distinct keywords related to the main subject of the page. In general, the proposed method, is divided in four distinct phases: (1) identification of the keywords that describe the web page content, using multiple sources of evidences; (2) use of a genetic algorithm to combine the sources of evidences; (3) definition of the three better keywords of the page; and (4) use of a web directory to identify the page main topic.
The results of the experiments show that: (1) the best source of evidence used to describe the keywords of a web page is the content link; (2) the proposed method is efficient to identify the main topic of a web page: 0.9129, in a scale of zero to one; and
(3) the proposed method is also efficient to automatic classify web pages within the Google directory, reaching 88%±0.11 of precision in the classification task. / Evidências textuais e estruturais que podem ser extraídas dos documentos web são frequentemente usadas na busca pela melhoria da qualidade dos resultados obtidos pelos diversos sistemas de recuperação de informação (RI). O tópico de uma página web é uma evidência textual que possui uma vasta aplicabilidade nesses sistemas, podendo servir como uma nova fonte de evidência para melhorar ranking de páginas web, melhorar sistemas de classificação e filtragem destas páginas, entre outros. O presente trabalho tem por objetivo estudar, desenvolver e avaliar um método para identificar automaticamente o tópico de páginas web através da combinação de diferentes fontes de evidências. Definimos o tópico de uma página como sendo um conjunto de, no máximo, cinco termos distintos relacionadas ao assunto principal da
página. Em linhas gerais, o método de identificação de tópicos proposto nesta dissertação, está dividido em quatro fases distintas: (1) identificação dos possíveis termos descritores de uma página web, fazendo uso de múltiplas fontes de evidências;
(2) utilização de um algoritmo genético na combinação das fontes de evidências usadas; (3) definição dos três melhores termos descritores da página; e (4) utilização da estrutura hierárquica de um diretório abrangente e popular da web com o objetivo de identificar o tópico da referida página.
Os resultados obtidos nos experimentos realizados para avaliar o método proposto foram os seguintes: (1) alto grau de importância do uso da concatenação do texto de âncora de links na descoberta dos termos descritores de uma página web; (2) boa avaliação da eficiência do método proposto na identificação de tópicos de páginas web: 0.9129, em uma escala de zero a um; e (3) boa avaliação da utilização de parte do
método proposto na classificação automática de páginas web na estrutura hierárquica do diretório Google, atingindo 88%±0.11 de acertos das páginas classificadas. Os experimentos realizados demonstram que o modelo proposto é útil na identificação do tópico de uma página web e também na classificação de páginas na estrutura hierárquica do diretório Google.
Identifer | oai:union.ndltd.org:IBICT/oai:http://localhost:tede/2957 |
Date | 24 April 2009 |
Creators | Lima, Márcia Sampaio |
Contributors | Cavalcanti, João Marcos Bastos |
Publisher | Universidade Federal do Amazonas, Programa de Pós-graduação em Informática, UFAM, BR, Instituto de Computação |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFAM, instname:Universidade Federal do Amazonas, instacron:UFAM |
Rights | info:eu-repo/semantics/openAccess |
Relation | -312656415484870643, 600 |
Page generated in 0.0037 seconds