This dissertation has two major parts; Analytical and Experimental. The analytical section contains a study using Finite Element Analysis of dynamic instrumentation to demonstrate stress reduction in adjacent level discs. The experimental section contains biomechanical testing of facet fusion allograft technique and finally a comparison between In Vivo and In Vitro intradiscal pressures to determine forces acting on Lumbar spine segment L4-L5. A comprehensive study of available data, technology and literature was done. Conventional fusion instrumentation is believed to accelerate the degeneration of adjacent discs due to the increased stresses caused by motion discontinuity. A three dimensional finite element model of the lumbar spine was obtained which simulated flexion and extension. Reduced stiffness and increased axial motion of dynamic posterior lumbar fusion instrumentation designs results in a ~10% cumulative stress reduction for each flexion cycle.
The cumulative effect of this reduced amplitude and distribution of peak stresses in the adjacent disc may partially alleviate the problem of adjacent level disc degeneration. Traditionally a pedicle screw system has been used for fixation of the lumbar spine and this involves major surgery and recovery time. Facet fixation is a technique that has been used for stabilization of the lumbar spine. The cadaver segments were tested in axial rotation, combined flexion/extension and lateral bending. Implantation of the allograft dowel resulted in a significant increase in stiffness compared to control. Facet fusion allograft provides an effective minimally invasive method of treating debilitating pain caused by deteriorated facet joints by permanently fusing them. An In Vitro biomechanical study was conducted to determine the intradiscal pressure during spinal loading. The intradiscal pressures in flexion/extension, lateral bending and axial rotation was compared to In Vivo published data.
There is no data that explains the actual forces acting on the spine during flexion, extension, lateral bending or axial rotation. The functional spinal units were tested in combined axial compression and flexion/extension, combined axial compression and lateral bending and combined axial compression and axial rotation using a nondestructive testing method. Overall, this study found a good correlation between In Vivo and In Vitro data. This can essentially be used to make physiological relation from experimental and analytical evaluations of the lumbar spine. It is important to know how much load needs to be controlled by an implant.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-3395 |
Date | 01 June 2007 |
Creators | Vestgaarden, Tov I |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0017 seconds