Return to search

Word Representations and Machine Learning Models for Implicit Sense Classification in Shallow Discourse Parsing

CoNLL 2015 featured a shared task on shallow discourse parsing. In 2016, the efforts continued with an increasing focus on sense classification. In the case of implicit sense classification, there was an interesting mix of traditional and modern machine learning classifiers using word representation models. In this thesis, we explore the performance of a number of these models, and investigate how they perform using a variety of word representation models. We show that there are large performance differences between word representation models for certain machine learning classifiers, while others are more robust to the choice of word representation model. We also show that with the right choice of word representation model, simple and traditional machine learning classifiers can reach competitive scores even when compared with modern neural network approaches.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-325876
Date January 2017
CreatorsCallin, Jimmy
PublisherUppsala universitet, Institutionen för lingvistik och filologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds