Cette étude de la compaction d’un empilement granulaire par vibrations horizontales a été réalisée dans le cadre d’un partenariat avec le groupe MERSEN pour une application au sable contenu dans ses fusibles. L’objectif scientifique est de développer la compréhension des mécanismes mis en jeu dans un milieu granulaire vibré horizontalement. Deux approches ont été utilisées en parallèle, l’une expérimentale, l’autre par simulation numérique. L’approche expérimentale a été réalisée sur des grains de silice de diamètre moyen 500 m. Un récipient de quelques centimètres est soumis à un mouvement sinusoïdal de fréquence comprise entre 20 et 200 Hz avec des accélérations allant jusqu’à 10 g. Le dispositif instrumenté permet la mesure instantanée de la force et de l’accélération, la vitesse des grains aux parois (PIV) ainsi que la densité globale du milieu. L’approche numérique est basée sur la méthode des éléments discrets (DEM). Des méthodes spécifiques d’analyse des résultats ont été développées pour assurer la comparaison avec l’expérience. Elles permettent d’obtenir des informations qui ne sont pas accessibles expérimentalement comme les densités, vitesses et contraintes locales dans l’ensemble de l’empilement. Dans le cas d’un récipient ouvert, la simulation permet de retrouver les résultats expérimentaux : rouleaux de convections, seuils de comportement, influence de l’accélération… Des résultats originaux ont été établis dans les expériences et les simulations comme une croissance de la vitesse des grains avec la longueur du récipient. La simulation a aussi permis d’obtenir des résultats spécifiques comme l’influence du coefficient de friction sur le sens des rouleaux et la caractérisation des contraintes au sein de l’empilement. L’écoulement des grains à travers des orifices circulaires de différentes dimensions a été également étudié. Le comportement du sable dans un récipient fermé (milieu confiné) a été étudié au cours d’un remplissage progressif. Des différences significatives ont été constatées lorsque le taux de remplissage devient élevé. Des mesures d’accélération et de force sur l’ensemble du dispositif ont permis de définir et de mesurer une masse apparente et l’énergie dissipée par le dispositif. Des modèles descriptifs ont permis de comprendre les comportements observés. Ces résultats sont à l’origine d’un brevet déposé par le groupe MERSEN sur le contrôle du remplissage. / This work on the densification of a granular medium under horizontal vibrations was realised in the context of an industrial study on sand in fuses, undertaken by the firm MERSEN. The scientific purpose is the understanding of the mechanisms involved in horizontally vibrated granular media. Both experiments and computer simulations were used. Experiments were conducted with 500 µm silica grains. Sinusoidal accelerations up to 10 g were applied to a container of a few centimetres using frequencies between 20 and 200 Hz. The experimental device enables instantaneous force, acceleration, grain velocity on the walls (PIV) and mean bulk density to be measured. Discrete element method (DEM) was used for the computer simulations. Specific techniques were developed to analyse the results and compare them with experiments. Computer simulations provided data which are not experimentally available such as local values of density, velocities and stress inside the particle packing. In the case of an open container, simulation results are in good agreement with experimental ones (convection rolls, thresholds, effect of acceleration...). Original results are obtained in both experiments and simulations, such as a grain velocity increase with the container length. Simulation provided specific results such as the effect of friction coefficients on the direction of rotation of convection rolls and the characterization of stress inside the particle packing. The flowability of grains across circular holes of various sizes was also studied. The behaviour of sand in a closed container (confined medium) was studied during a progressive filling. Significant differences were observed when the filling rate becomes high. The dissipated energy and the apparent mass of the vibrated device were defined and measured using acceleration and force measurements. Specific models were built to analyse and understand the observed behaviour. Some results on the filling control were patented by MERSEN.
Identifer | oai:union.ndltd.org:theses.fr/2012EMSE0652 |
Date | 10 May 2012 |
Creators | Nadler, Sébastien |
Contributors | Saint-Etienne, EMSE, Thomas, Gérard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds