Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-09-18T11:33:32Z
No. of bitstreams: 1
2016 - Jo?o M?rcio Sutana Alvim.pdf: 4276113 bytes, checksum: 115487153abb7bab43e2a012959a64e4 (MD5) / Made available in DSpace on 2017-09-18T11:33:34Z (GMT). No. of bitstreams: 1
2016 - Jo?o M?rcio Sutana Alvim.pdf: 4276113 bytes, checksum: 115487153abb7bab43e2a012959a64e4 (MD5)
Previous issue date: 2016-12-21 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / In the classic set of unit operations of solid-liquid separation, sedimentation and filtration techniques stand out as critical processing steps for a broad spectrum of industrial activities. In this context, the proper knowledge of the properties and characteristics of the particulate systems directly involved represents an important aspect for the safe and efficient design of equipment and processes. Over the past 20 years, several methodologies were developed to study such phenomena, resulting in a huge library of sedimentation and filtration models available in the literature. This work presents a study based on the use of a particle-scale numerical simulation technique called Discrete Element Method (DEM), to describe the deposition of particulate solids in liquids. Tridimensional simulations of the sedimentation and filtration processes were carried out in a previously known flow field, as a way to test the applicability of the code and its capacity to virtually describe such processes. Cake properties, such as thickness, porosity and permeability were quantified over time and compared qualitatively and quantitatively with literature data. The effects of operational conditions, solids and liquid properties on the particulate model?s response were also investigated through a series of controlled numerical tests. The packing fraction values obtained in this work for the sedimentation process, when compared to the values found in the literature on similar conditions, showed a satisfactory agreement, with deviations smaller than 12% for all the points assessed / Dentro do conjunto cl?ssico das opera??es unit?rias de separa??o s?lido?l?quido, as t?cnicas de sedimenta??o e filtra??o se destacam como etapas de processamento cruciais para um amplo espectro de atividades da ind?stria. Neste contexto, o conhecimento adequado das propriedades e caracter?sticas dos sistemas particulados diretamente envolvidos representa um aspecto importante para o projeto seguro e eficiente de equipamentos e processos. Ao longo dos ?ltimos 20 anos, diversas metodologias foram desenvolvidas para estudar tais fen?menos, resultando em uma ampla biblioteca de modelos de sedimenta??o e filtra??o dispon?vel na literatura. O presente trabalho apresenta um estudo baseado no uso da simula??o num?rica em escala de part?cula, atrav?s do M?todo de Elementos Discretos ou DEM (do ingl?s ?Discrete Element Method?), para descrever a deposi??o de s?lidos particulados em suspens?es. Foram realizadas simula??es da sedimenta??o e filtra??o em tr?s dimens?es como forma de testar o funcionamento do c?digo e a sua capacidade de reproduzir virtualmente tais processos. As propriedades da torta, tais como espessura, porosidade e permeabilidade foram quantificadas ao longo do tempo e comparadas qualitativa e quantitativamente com dados da literatura. A sensibilidade do modelo desenvolvido a varia??es nas condi??es operacionais de simula??o e nas propriedades f?sicas do s?lido e do l?quido tamb?m foi analisada. Os dados de fra??o de s?lidos obtidos nas simula??es da sedimenta??o apresentaram uma concord?ncia satisfat?ria, quando comparados aos valores encontrados na literatura em condi??es similares, apresentando desvios menores do que 12% para todos os pontos avaliados.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/2040 |
Date | 21 December 2016 |
Creators | Alvim, Jo?o M?rcio sutana |
Contributors | Meleiro, Luiz Augusto da Cruz, Cal?ada, Lu?s Am?rico, Torres, Alexandre Rodrigues, Mancini, Mauricio Cordeiro |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Engenharia Qu?mica, UFRRJ, Brasil, Instituto de Tecnologia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | ABREU, C.R.A.; TAVARES, F.W.; CASTIER, M. Influence of particle shape on the packing and on the segregation of spherocylinders via Monte Carlo simulations. Powder Technology, vol.134, pp. 167-180, 2003. ALLEN, M.P., TILDESLEY, D.J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987. ARA?JO, C.A.O. Estudo da Filtra??o Cruzada em Geometria Cil?ndrica. Disserta??o de Mestrado, PPGEQ/UFRRJ, Serop?dica, Brasil, 2010. AROUCA, F.O. Uma Contribui??o ao Estudo da Sedimenta??o Gravitacional em Batelada. Tese de Doutorado, FEQUI/UFU, Uberl?ndia, Brasil, 2007. BELL, N.; YU, Y.; MUCHA, P.J. Particle-Based Simulation of Granular Materials. Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2005. BIRD, R.B.; STEWART, W.E.; LIGHTFOOT, E.N. Fen?menos de Transporte. 2? Edi??o. LTC, 2004. BRILLIANTOV, N.V.; POSCHEL, T. Rolling friction of a viscous sphere on a hard plane. Europhysics Letters, vol. 42, pp. 511-516, 1998. CALABREZ, N.D. Filtra??o e Invas?o de Fluidos de Perfura??o: Estudo Comparativo, Caracteriza??o da Torta e Modelagem. Disserta??o de Mestrado, PPGEQ/UFRRJ, Serop?dica, Brasil, 2013. CLEARY, P.W.; SAWLEY, M.L. DEM modeling of industrial granular flows: 3D case studies and the effects of particle shape on hopper discharge. Applied Mathematical Modeling, vol. 26, pp. 89-111, 2002. COE, H.S.; CLEVENGER, G.H. Methods of Determining the Capacities of Slime-Settling Tanks. Am. Inst. Engrs., vol. 55, pp. 356-384, 1916. COULSON, J.M.; RICHARDSON, J.F. Chemical Engineering: Particle Technology and Separation Processes. 5th Edition. Oxford: Butterworth Heinemann, 2002. Vol. 2. CREMASCO, M.A. Opera??es Unit?rias em Sistemas Particulados e Fluidomec?nicos. 2? Edi??o. Blucher, 2012. CROWE, C.T.; SCHSCHWARZKOPF, J.D.; SOMMERFELD, M.; TSUJI, Y. Multiphase Flows with Droplets and Particles. 2nd Edition. CRC Press, 2012. CUNDALL, P.A.; STRACK, O.D.L. A discrete numerical model for granular assemblies. Geotechnique, vol. 29, pp. 47-65, 1979. DAMASCENO, J.J.R. Uma Contribui??o ao Estudo do Espessamento Cont?nuo. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro, Brasil, 1992. 90 DAMASCENO, J.J.R; MASSARANI, G. C?lculo da Capacidade de Sedimentadores Atrav?s da Determina??o da Permeabilidade do Sedimento. Anais do XXI Encontro sobre Escoamentos em Meios Porosos, pp. 233-242, Ouro Preto, Brasil, 1993. DEWAN, J.T.; CHENEVERT, M.E. A Model for filtration of water-base mud during drilling: determination of mud cake parameters. Petrophysics, vol. 42, pp. 237-250, 2001. DI FELICE, R. The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, vol. 20, pp. 153-159, 1994. DI RENZO, A.; DI MAIO, F.P. Comparison of the contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, vol. 59, pp. 525-541, 2004. DONG, K.J.; ZOU, R.P.; YANG, R.Y.; YU, A.B.; ROACH, G. Simulation of cake formation and growth in sedimentation and filtration. 3rd International Conference on CFD in Minerals and Process Industries, Melbourne, Australia, 2003. DONG, K.J.; YANG, R.Y.; ZOU, R.P.; YU, A.B. Role of Interparticle Forces in the Formation of Random Loose Packing. Physical Review Letters 96, 145505, 2006. DONG, K.J.; ZOU, R.P.; YANG, R.Y.; YU, A.B.; ROACH, G. DEM simulation of cake formation in sedimentation and filtration. Minerals Engineering, vol. 22, pp. 921-930, 2009. FERRAZ, A.S.F.S. Efeito da Distribui??o Granulom?trica de part?culas s?lidas e de pol?meros ani?nicos na forma??o da torta de filtra??o e no volume de filtrado. Disserta??o de Mestrado, PPGEQ/UFRRJ, Serop?dica, Rio de Janeiro, Brasil, 2014. FERREIRA, A.S.; MASSARANI, G. Physical-mathematical modeling of cross flow filtration. Chemical Engineering Journal, vol. 111, pp. 199-204, 2005. FOX, R.W.; PRITCHARD, P.J.; McDONALD, A.T. Introdu??o ? Mec?nica dos Fluidos. 7? Edi??o. LTC, 2010. HAMAKER, H.C. The London-van der Waals attraction between spherical particles. Physica, vol. 4, pp. 1058-1072, 1937. HWANG, K.J.; WANG, Y.S. Numerical Simulation of Particle Deposition in Cross-Flow Microfiltration of Binary Particles. Tamkang Journal of Science and Engineering, vol. 4, pp. 119-125, 2001. IWASHITA, K.; ODA, M. Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM. Journal of Engineering Mechanics ? ASCE, vol. 124, pp. 285-292, 1998. 91 ISRAELACHVILI, J.N. Intermolecular and Surface Forces. Academic Press, 1991. JIAO, D.; SHARMA, M.M. Mechanism of cake buildup in cross flow filtration of colloidal suspensions. Journal of Colloid and Interface Science, vol. 162, pp. 454-462, 1993. JIN, G.; PATZEK, T.W. Physics-base Reconstruction of Sedimentary Rocks. SPE International Symposium on Oilfield Chemistry, SPE 83587, Long Beach, EUA, 2003. KYNCH, G.J. A Theory of Sedimentation. Trans Faraday Society, vol. 48, pp. 166-177, London, 1952. LANGSTON, P.A.; T?Z?N, U.; HEYES, D.M. Discrete Element Simulation of Granular Flow in 2D and 3D Hoppers: Dependence of Discharge Rate and Wall Stress on Particle Interactions. Chemical Engineering Science, vol. 50, pp. 967-987, 1994. LI, J.; KUIPERS, J.A.M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds, a discrete particle simulation study. Powder Technology, vol. 127, pp. 173-184, 2002. LIU, X.; CIVAN, F. A Multiphase Mud Fluid Infiltration and Filter Cake Formation Model. SPE International Symposium on Oilfield Chemistry, SPE 25215, Nova Orleans, EUA, 1993. LU, W.M.; HWANG, K.J. Cake formation in 2D cross-flow filtration. AIChE Journal, vol. 41, pp. 1443-1455, 1993. LUDING, S.; LATZEL, M.; VOLK, W.; DIEBELS, S. HERRMANN, H.J. From discrete element simulations to a continuum model. Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 21-28, 2001. MASSARANI, G. Fluidodin?mica em Sistemas Particulados. 2? Edi??o. Rio de Janeiro: E-papers, 2002. McCABE, W.L.; SMITH, J.C.; HARRIOT, P. Unit Operations of Chemical Engineering. 5th Edition. McGraw-Hill, 1993. MARSHALL, J.S.; LI, S. Adhesive Particle Flow: A Discrete-Element Approach. Cambridge University Press, 2014. MATUTTIS, H.G.; CHEN, J. Understanding the Discrete Element Method: Simulation of Non-Spherical Particles for Granular and Multi-Body Systems. John Wiley & Sons, 2014. MINDLIN, R.D.; DERESIEWICZ, H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, vol. 20, pp. 327-344, 1953. 92 MUNJIZA, A.; ANDREWS, K.R.F. NBS Contact Detection Algorithm for Bodies of Similar Size. International Journal for Numerical Methods in Engineering, vol 43, pp. 131-149, 1998. MUNJIZA, A. The Combined Finite-Discrete Element Method. John Wiley & Sons, 2004. NI, L.A.; YU, A.B.; LU, G.Q.; HOWES, T. Simulation of the cake formation and growth in cake filtration. Minerals Engineering, vol. 19, pp. 1084-1097, 2006. ODA, M.; IWASHITA, K. Mechanics of Granular Materials. Balkema, 1999. O?SULLIVAN, C. Particulate Discrete Element Modeling. Spoon Press, 2011. Vol. 4. PERRY, R.H.; GREEN, D.W.; MALONEY, J.O. Perry-s Chemical Engineer?s Handbook. 7th Edition. Mc Graw-Hill, 1999. P?SCHEL, T.; SCHWAGER, T. Computational Granular Dynamics: Models and Algorithms. Springer-Verlag, 2005. RUMPF, H. The Strength of Granules and Agglomerates. Wiley Interscience, 1962. SVAROVSKY, L. Solid-Liquid Separation. Butterworth Heinemann, 2000. TIEN, C.; BAI, R.; RAMARAO, B.V. Analysis of cake growth in cake filtration: effect of fine particle retention. AIChE Journal, vol. 43, pp. 33-44, 1997. TILLER, F.M.; CHEN, W. Limiting Operating Conditions for Continuous Thickeners. Chemical Engineering Science, vol. 43, pp.1695-1704, 1988. TSUJI, Y.; TANAKA, T.; ISHIDA, T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, vol. 71, pp. 239-250, 1992. TILLER, F.M.; COOPER, H. The Role of Porosity in Filtration: Part IV ? Constant Pressure Filtration. AIChE Journal, vol. 8, pp. 445-449, 1960. WAKEMAN, R.J. A Numerical Integration of the Differential Equations Describing the Formation of the Flow in Compressible Filter Cakes. Trans IChemE, vol. 56, pp. 258-265, 1978. XIAO, L.; PIATTI, C.; GIACCA, D. Studies on the Damage Induced by Drilling Fluids in Limestone Cores. SPE International Symposium on Oilfield Chemistry, SPE 50711, Houston, EUA, 1999. XU, B.H.; YU, A.B. Numerical simulation of the gas-solid flow in a fluidized bed by combining the discrete particle method with computational fluid dynamics. Chemical Engineering Science, vol. 52, pp. 2785-2809, 1997. XU, B.H.; YU, A.B.; CHEW, S.J.; ZULLI, P. Numerical Simulation of the gas-solid flow in a bed with lateral gas blasting. Powder Technology, vol. 109, pp. 13-26, 2003. 93 YANG, R.Y.; ZOU, R.P.; YU, A.B. Computer simulation of the packing of fine particles. Physical Review E 62 (3), 3900-3908, 2000. ZHANG, Z.P.; LIU, L.F.; YUAN, Y.D.; YU, A.B. A simulation study of the effects of dynamic variables on the packing of spheres. Powder Technology, vol. 116, pp. 23-32, 2001. ZHU, H.P.; WU, Y.H.; YU, A.B. Discrete and Continuum Modeling of Granular Flow. China Particuology, vol. 6, pp. 354-363, 2005. ZHU, H.P.; ZHOU, Z.Y.; YANG, R.Y.; YU, A.B. Discrete Particle Simulation of Particulate Systems: Theoretical Developments. Chemical Engineering Science, vol. 62, pp. 3378-3396, 2007. ZHU, H.P.; ZHOU, Z.Y.; YANG, R.Y.; YU, A.B. Discrete Particle Simulation of Partticulate Systems: A review of major applications and findings. Chemical Engineering Science, vol. 63, pp. 5728-5770, 2008. |
Page generated in 0.0255 seconds